CORDOVA FISH PASSAGE IMPROVEMENTS – CAB 1 AND CAB 2

Hydrologic and Hydraulic Report Cordova, Alaska

Prepared for:

U.S. Fish and Wildlife Service Region 7-Alaska 1011 E Tudor Road Anchorage, Alaska 99503

Prepared by:

DOWL 5015 Business Park Boulevard, Suite 4000 Anchorage, Alaska 99503

October 2022

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Objective	
	1.2	Existing Conditions	
	1.3 1.4	Design CriteriaRight-of-Way and Utilities	3 2
2.0		OTECHNICAL CONDITIONS	
	2.1	CAB 1 and CAB 2	
		2.1.2 South	
		2.1.3 Soil Bearing Capacity	
		2.1.4 Construction Recommendations	4
	2.2	Summary	4
3.0	GEO	OMORPHIC ANALYSIS	5
	3.1	Stream Morphology and Crossing Characteristics	
		3.1.1 CAB 1 and CAB 2	5
	3.2	Substrate Analysis	
		3.2.1 CAB 1 and CAB 2 Upstream	
4.0		DROLOGIC ANALYSIS	
	4.1 4.2	Drainage Area Characteristics	
	4.2	Results of Flood Flow Analysis	
	1.0	4.3.1 CAB 1 and CAB 2	
5.0	НУГ	DRAULIC ANALYSIS	q
0.0	5.1	Bankfull Velocity and Discharge Estimates	
	5.2	HY-8 Analysis	
	5.3	Low Flow Channel	
		5.3.1 CAB 2	
		5.3.2 CAB 1	
6.0	DES	SIGN ALTERNATIVES	11
7.0	REC	COMMENDATIONS	12
		7.1.1 CAB 2	
		7.1.2 CAB 1	
	7.2	Rejected Alternatives	
		7.2.1 CAB 2 7.2.2 CAB 1	
8.0	REF	FERENCES	13
FIG	URE	S	
			^
Figure) 1. U/	AB 1 and CAB 2 Drainage Basin ummary of CAB 1 and CAB 2 Upstream Pebble Count	22 ۾
		ummary of CAB 1 and CAB 2 Downstream Pebble Counts	

TABLES

Table 1: Observed Stream Characteristics of Elsner River Tributary at CAB 1 and CAB 2	5
Table 2: CAB 1 and CAB 2 Upstream Pebble Count Summary	
Table 3: CAB 1 and CAB 2 Downstream Pebble Count Summary	
Table 4: Estimated Peak Flows for CAB 1 and CAB 2	
Table 5: Ratio of Culvert Width to Bankfull Width	

APPENDICES

APPENDIX A: GEOMORPHIC ANALYSIS
APPENDIX B: SUBSTRATE DESIGN
APPENDIX C: HYDROLOGIC ANALYSIS
APPENDIX D: HYDRAULIC ANALYSIS

ACRONYMS

Alaska Department of Fish and Game	ADF&G
Anadromous Waters Catalog	AWC
cubic feet per second	cfs
Copper River Watershed Project	CRWP
Fish Passage Inventory Database	FPID
feet per second	fps
headwater-to-depth ratio	HW/D
millimeters	mm
National Oceanic and Atmospheric Administration	NOAA
ordinary high water	OHW
right-of-way	ROW
	USDA
United States Fish and Wildlife Service	
United States Forest Service	USFS
United States Geological Survey	USGS

1.0 INTRODUCTION

1.1 Objective

The objective of this project is to remove two existing culverts in the Copper River Delta near Cordova, Alaska, replacing one of them with a new culvert that will improve fish passage and providing channel and stream bank restoration where the second culvert is removed. The replacement culvert and stream bank restoration will enhance flood and fish passage and ecologic function at the road crossings of Elsner River Tributary by simulating the natural creek channel and provide conveyance of at least the 100-year flood flow. The culvert will also enhance maintenance conditions at the remaining crossing and reduce the likelihood of future infrastructure damage caused by flooding along the road. The Elsner River Tributary is an anadromous stream originating northeast of Cabin Lake Road and flowing southwest to Elsner River and the Little Glacier Slough. The Elsner Creek Tributary is fed by subsurface flows and does not respond significantly to precipitation. The project crossing drainage basin is shown in Figure 1.

The Elsner River Tributary is identified in the Alaska Department of Fish and Game's (ADF&G) Anadromous Waters Catalog (AWC) as number 212-10-10030-2150-3016. The stream crossings have been identified as No. 20101904 (CAB 1) and No. 20101905 (CAB 2) in the ADF&G's Fish Passage Inventory Database (FPID). CAB 2 has been given a Red rating and CAB 1 has been given a Green rating. The Elsner River Tributary provides rearing habitat for Coho salmon.

To meet project objectives, a topographic survey of the project area was completed to facilitate hydraulic modeling. A geomorphic analysis was used to assess sediment transport and to incorporate natural channel characteristics into the design. A geotechnical analysis, completed in April 2019 by others, was used to investigate subsurface soil conditions at the four crossings. Design alternatives were evaluated to determine the most economical means of replacing the existing structures to improve ecological function and flood conveyance.

1.2 Existing Conditions

CAB 2 is located on Cabin Lake Road, downstream of CAB 1. The existing culvert at CAB 2 is 3 feet in diameter and 35 feet long. The culvert has a gradient of 1.1% and a constriction ratio of 0.34. Corrosion has been observed on the existing culvert with a rust line height of 2.8 feet. Additionally, the culvert is backwatered and the culvert inlet is squashed with the bottom of culvert bent up preventing low flows to enter the pipe. There is minimal cover over the pipe. CAB 2 was given an overall fish passage rating of Red in 2011 by ADF&G. Remnants of an old timber weir are located just upstream of CAB 2.

CAB 1 in located on an old, abandoned spur road of Cabin Lake Road, upstream of CAB 2 and the old weir. The existing culvert at CAB 1 is 3 feet in diameter and 21 feet long. The culvert has a gradient of 2% and a constriction ratio of 0.22. Corrosion has been observed on the existing culvert with a rust line height of 1.65 feet. The crossing was observed to have inadequate road fill volume above the culvert. Despite these negative characteristics, CAB 1 was given an overall fish passage rating of Green in 2011 by ADF&G due to the backwater characteristics.

Figure 1: CAB 1 and CAB 2 Drainage Basin

1.3 Design Criteria

The geomorphic analog method is the preferred design approach for the CAB 1 and CAB 2 crossings of Elsner River Tributary. The design of the proposed fish passage culverts is based on criteria and guidelines contained in the USFWS Fish Passage Design Guidelines (Revision 6) released June 2021, which follows the United States Forest Service (USFS) stream simulation approach with modifications. The USFS stream simulation approach is described in the 2008 Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings. Key criteria from the sources include:

- The constructed channel within the crossing shall not differ from the reference reach condition under normal flow conditions regarding channel width, cross-sectional area, gradient, substrate, and ability to pass floating debris;
- The culvert width shall be at least 1.0 times bankfull width, with a minimum diameter of 5 feet:
- The embedment depth shall be the greater of 40 percent of the diameter or two feet for circular culverts;
- Embedment depth shall be the greater of 20 percent of the rise or two feet for all other culverts;
- Substrate material within the crossing shall be dynamically stable up to and including the 50-year flood;
- Stream banks inside the culvert shall be stable up to and including the 100-year flood;
- A continuous low flow channel that simulates the reference reach shall be incorporated in the substrate material;
- Culvert gradient shall be within 25% of the natural channel grade;
- Culverts shall be corrugated; and
- Structures shall be designed to accommodate at least the 100-year flood flow, preferably with a headwater-to-depth (HW/D) ratio of 0.8 or less.

1.4 Right-of-Way and Utilities

Cabin Lake Road is owned by the USFS.

No known utilities are located along Cabin Lake Road at the CAB 1 and CAB 2 crossings.

2.0 GEOTECHNICAL CONDITIONS

A geotechnical investigation consisting of two borings at each crossing was conducted at the two fish passage crossing locations in April 2019 by Northern Geotechnical Engineering, Inc. The subsurface conditions encountered, soil bearing capacity, and site-specific geotechnical construction recommendations are summarized below.

2.1 CAB 1 and CAB 2

2.1.1 North

- 0 to 7 feet: Well graded gravel with silt and sand. Groundwater encountered at approximately 4.5 feet.
- 7 to 15 feet: Well graded sand with silt and gravel.
- 15 to 18 feet: Sandy silt.
- 18 to 21.5 feet: Silty sand

2.1.2 South

- 0 to 3 feet: Poorly graded gravel with silt and sand.
- 3 to 4.5 feet: Silt with sand. Groundwater encountered at approximately 4.5 feet.
- 4.5 to 6 feet: Silty sand with gravel.
- 6 to 7 feet: Wood.
- 7 to 15 feet: Well graded gravel with sand.
- 15 to 18 feet: Sandy silt.
- 18 to 21.5 feet: Silty sand.

2.1.3 Soil Bearing Capacity

The allowable soil bearing capacity of 3,900 pounds per square foot may be used for a box culvert foundation on undisturbed sand and gravel or compacted structural fill.

2.1.4 Construction Recommendations

Site bearing soils approximately 10 to 11 feet below the road surface consist of loose well graded sand and gravel. Excavation is required a minimum of 2 feet below the bottom of the culvert. Organic material observed must be completely removed and inspected to ensure all organic materials have been removed. The very loose/soft soils should be removed during excavation of the unsuitable organic material. Then placement of geotextile, reinforcement, type 2 and Subbase, Grading F material is required, as described in the next section.

2.2 Summary

Additional recommendations provided in the geotechnical report include using culvert embedment material Subbase, Grading F, extended one foot below the bottom of the culvert, 18 inches to both sides of the culvert, and a minimum of one foot above the culvert. A layer of geotextile, reinforcement, type 2 should be placed between the Subbase, Grading F material

and the native soil or Type A material. A layer of geotextile, reinforcement, type 2 should be placed between each one-foot layer of Subbase, Grading F material.

3.0 GEOMORPHIC ANALYSIS

A site investigation was conducted on July 20 through 23, 2021. During the site visit, DOWL engineers took channel measurements, conducted pebble counts, and observed bedform features. The reconnaissance-level map, field notes, and pebble count data from the site investigation are included in Appendix A.

3.1 Stream Morphology and Crossing Characteristics

3.1.1 CAB 1 and CAB 2

Elsner River Tributary is a spring fed tributary that originates northeast of Cabin Lake Road and flows southwest into Elsner River.

CAB 1 is located upstream of CAB 2. Upstream of the CAB 1 Old Timber Road crossing, the Elsner River Tributary is heavily vegetated, with significant woody debris. The stream is meandering with several channels of split flow and ponded areas. Gravel is present inside the pipe and near the outlet of the pipe. The Old Timber Road embankment over the pipe is split open, indicating overtopping. The predominant bedform features consist of slow pools with occasional riffles, woody debris steps, and ponded areas. Upstream is low gradient and the banks are low and vegetation and woody debris provide bank stabilization. The stream substrate consists of a various range of gravel sizes and organics. Riparian vegetation includes grasses, moss, fern, alder, willow, hemlock, and spruce trees. The floodplain is wide.

There is a gravel bar just downstream of the CAB 1 culvert. A ponded area with woody debris is located downstream of CAB 1 and upstream of CAB 2 with remnants of an old timber weir approximately 30 feet upstream of CAB 2. Downstream of the CAB 2 Cabin Lake Road crossing, the Elsner River Tributary is meandering with slow pools and woody debris steps. Downstream is low gradient and the banks are low and vegetation and woody debris provide bank stabilization. It appears that the relic channel is beginning to narrow and become more confined. Stream substrate consists of a various range of gravel sizes with some small cobbles, sand and organics. Riparian vegetation includes grasses, moss, fern, alder, willow, hemlock, and spruce trees. The floodplain is wide.

A reference reach was not defined at this crossing, but two cross sections were measured upstream and downstream of the crossings, outside of the surveyed area. Observed bankfull width at the crossing upstream was 4 feet with a bankfull depth of 16 inches. The observed bankfull width at the crossing downstream was 3 feet with a bankfull depth of 11 inches. The channel slope is approximately 0.6 percent.

The observed stream characteristics of Elsner River Tributary at the measured cross sections at CAB 1 and CAB 2 are summarized in Table 1.

Table 1: Observed Stream Characteristics of Elsner River Tributary at CAB 1 and CAB 2

Stream Parameter	Existing Conditions		
Surveyed WSE Slope	0.6 percent		

Measured Bankfull Width	3 to 4 feet
Measured Bankfull Depth	1.1+/- feet
Bedform Features	Step-Pools, Riffles, Fines

The Cabin Lake Road roadway embankment at CAB 2 is well vegetated with recent grading of the gravel road. There is between 0.5 and 1.3 feet of roadway cover over the existing culvert. No end sections or headwalls are present at the CAB 1 and CAB 2 culverts.

3.2 Substrate Analysis

Pebble counts were completed on July 21 and 22, 2021. The D_{84} particle represents that size of which 84 percent of the streambed particles are expected to be smaller in size and is typically used as the basis for sizing rock that is only transported downstream during large flood events. Visual observations in the vicinity of the crossings agree with the pebble count results.

3.2.1 CAB 1 and CAB 2 Upstream

One pebble count was conducted approximately 140 feet upstream of CAB 2 and just downstream of CAB 1. The D_{84} particle size was 55.0 millimeters (mm). The armor layer upstream of CAB 2 and downstream of CAB 1 was found to range from fine gravel to small cobble, with most of the stream substrate consisting of course and very coarse gravel. A summary of the pebble counts is shown in Figure 2 and Table 2.

Figure 2: Summary of CAB 1 and CAB 2 Upstream Pebble Count

For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed stream section. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

	Count 1
Particle Size	140 feet Upstream CAB 2
D ₁₀₀ (mm)	90
D ₈₄ (mm)	55.0
$D_{E0}(mm)$	33.8

Table 2: CAB 1 and CAB 2 Upstream Pebble Count Summary

3.2.2 CAB 1 and CAB 2 Downstream

Two pebble counts were conducted downstream of CAB 1 and CAB 2; pebble count 1 was taken in a riffle and pebble count 2 was taken at the outlet of CAB 2. The average D₈₄ particle size downstream of CAB 1 and CAB 2 was 80 millimeters (mm). The armor layer downstream of CAB 1 and CAB 2 was found to range from medium gravel to small cobble, with most of the stream substrate consisting of medium to very coarse cobble. A summary of the pebble counts is shown in Figure 3 and Table 3.

Pebble Count Data - CAB 1 and CAB 2 Downstream

Figure 3: Summary of CAB 1 and CAB 2 Downstream Pebble Counts

For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed culvert. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Particle	Count 1	Count 2	
Size	Downstream	Downstream	
D ₁₀₀ (mm)	256	90	
D ₈₄ (mm)	90	46.5	
D ₅₀ (mm)	63	22.4	

Table 3: CAB 1 and CAB 2 Downstream Pebble Count Summary

4.0 HYDROLOGIC ANALYSIS

4.1 Drainage Area Characteristics

The Elsner River Tributary CAB 1 and CAB 2 drainage basin flowing to Cabin Lake Road is approximately 48 acres (0.08 square miles) in size. The drainage basin is an undeveloped, forested area.

4.2 Methodology

Four methods of quantifying flow were compared to identify the most appropriate design discharge likely experienced by the crossings. Cordova's interconnected floodplain hydrology is not thought to be accurately captured by the USGS regional regression equations. The flow estimates derived from the regression equations were supplemented by flow estimates derived from stage-discharge measurements at CAB 2 completed by the USFWS.

The 2003 and the 2016 Regional Regression Equations were used to estimate peak discharges for the Elsner River Tributary crossings. The 2016 Regional Regression Equations, published by the United States Geological Survey (USGS) in the Scientific Investigations Report 2016-5024, were used to estimate peak discharges for both crossings. The USGS PRISM data for the drainage areas was used to find a mean annual precipitation value of 104.46 inches for CAB 1 and CAB 2. The drainage basin for CAB 1 and CAB 2 is smaller than the 0.4 square mile lower limit area so WinTR-55 was used in addition to the Regional Regression Equations.

The stage was measured at CAB 2 for two and three years, respectively. Flow measurements were taken in the field by CRWP and USFWS to generate stage-discharge relationships for the gauges and were correlated to the USGS Glacier Tributary gauge. A log-Pearson Type III analysis was conducted to estimate the flood frequency.

4.3 Results of Flood Flow Analysis

4.3.1 CAB 1 and CAB 2

The peak runoff flows for each analysis method for CAB 1 and CAB 2 are shown in Table 4.

Table 4: Estimated Peak Flows for CAB 1 and CAB 2

Storm Event (year)	2016 Regional Regression (cfs)	2003 Regional Regression (cfs)	WinTR-55 (cfs)	LPIII Flood Frequency Estimate (cfs)
2	12.6	23.4	16.3	6.3
5	22.3	31.6	23.8	8.0
10	30.0	37.1	30.0	9.0
25	41.0	44.0	38.9	10.1
50	49.8	49.1	46.2	10.9
100	59.7	54.1	53.9	11.7

Notes: cfs = cubic feet per second

The flow estimates derived from measured stage at the site are significantly lower than the USGS regression equations and Win TR-55 flow estimates. The flow estimates based on measured stage appear to match observations made during the July 2021 site visits and the groundwater fed nature of this system. Given the period of record, the observations at site, and size of the contributing basin, it appears that log-Pearson Type III estimates are appropriate to size the rehabilitated channel section.

Per the criteria identified in the project objectives, culverts for CAB 2 and stream widths for CAB 1 have been evaluated for hydraulic capacity based on the 100-year peak flow of 11.7 cubic feet per second (cfs).

5.0 HYDRAULIC ANALYSIS

5.1 Bankfull Velocity and Discharge Estimates

The bankfull discharge and velocity was calculated for the measured cross section based on the cross section hydraulic dimensions, bankfull slope, and Manning's Equation using the River Stability Field Guide worksheets to check that average bankfull velocity is between 2.5 to 5 feet per second (fps) and that the bankfull discharge is close to the 2-year flood flow. Calculated bankfull velocity and discharge from the worksheet is shown below and based on guidance from the USFWS Fish Passage Design Guidelines (Revision 6). River Stability Field Guide worksheets are included in Appendix D.

ESTIMATION METHODS Bankfull VELOCITY		kfull ARGE		
1. Friction Relative Factor Roughness $\bar{u} = [2.83 + 5.66 * Log \{R/D_{84}\}] u^*$	1.89	ft / sec	6.25	cfs
2. Roughness Coefficient: a) Manning's n from Friction Factor/Relative Roughness (Figs. 2-29, 2-30) $\bar{u} = 1.49 \text{R}^{2/3} \text{*S}^{1/2} / n$ $n = \boxed{0.045}$	1.73	ft / sec	5.71	cfs

A 3-foot bankfull riffle width resulted in the calculated 6.25 cfs and 5.71 cfs bankfull discharge for the crossings which is less than the 2-year storm event for the estimated peak flows.

ESTIMATION METHODS		Bankfull VELOCITY		Bankfull DISCHARGE	
1. Friction Relative Factor Roughness $\bar{u} = [2.83 + 5.66 * Log \{R/D_{84}\}] u^*$	2.09	ft / sec	9.22	cfs	
2. Roughness Coefficient: a) Manning's n from Friction Factor/Relative Roughness (Figs. 2-29, 2-30) $\ddot{u} = 1.49 \text{R}^{2/3} \text{*S}^{1/2}/n$ $n = \boxed{0.045}$	1.86	ft / sec	8.20	cfs	

A 4-foot bankfull riffle width resulted in the calculated 9.22 cfs and 8.20 cfs bankfull discharge for the crossings which is between the 5- and 10-year storm event for the estimated peak flows.

The 4-foot bankfull width was used for the design to be conservative, due to the limited duration of stage measurements and the higher peak flows calculated using the Regression and WinTR-55 peak runoff flow methods.

5.2 HY-8 Analysis

The Federal Highway Administration's HY-8 software was used for the hydraulic analysis of proposed culverts. The software was used to model the hydraulic capacity at the 50-year and 100-year flow and calculate the overtopping flow. Results of the HY-8 analyses for the proposed culvert options are included in Section 7.0 Recommendations. Supporting calculations are included in Appendix D. Structures were selected for analysis based on span dictated by the measured bankfull widths and HW/D ratios.

5.3 Low Flow Channel

5.3.1 CAB 2

The low-flow channel for the CAB 2 crossing was calculated based on guidance from the USFWS Fish Passage Design Guidelines (Revision 6). A "V" shaped thalweg with a cross-sectional area of 15 to 30 percent of the bankfull cross-sectional area and a minimum depth of four inches for small streams and up to twelve inches for larger streams was used for design of the low-flow channels.

5.3.2 CAB 1

The USDA Forest Service Low Water Crossings: Geomorphic, Biological, and Engineering Design Considerations (2008) was used as guidance to determine site hydraulic factors needed for design of the low-water crossing at CAB 1. Manning's equation was used to determine flow depth and velocity through the respective components of the channel section. Supporting

calculations are included in Appendix D. The geometry of the crossing was selected for analysis based existing measured bankfull widths and the ability to pass a 60mm design fish during Q_2D_2 flows.

6.0 DESIGN ALTERNATIVES

Design guidelines recommend that culvert span for proposed replacement structures should be at least 1.0 times bankfull width and up to 1.4 times bankfull width. One of the main design parameters in the analysis of design options is the HW/D: a numerical representation of the depth of the water (headwater depth) at the culvert inlet to the height (depth) of the culvert relative to the stream bed. For stream simulation design, a HW/D of 0.8 or less is desirable when economically reasonable to reduce the likelihood for scour of bed material within the culvert during flood events and to provide freeboard for passing debris during flood events. A combination of measured bankfull information and HW/D ratios was used to determine acceptable structures for the crossings.

Several replacement alternatives have been evaluated including various aluminum box culvert, pipe arch culvert and round culvert sizes at CAB 2. Applicable culvert shapes for each crossing were determined with consideration given to groundwater elevations and available cover over the pipe.

Aluminum and steel structural plate pipe arch and round culvert options were considered, as well as aluminum and aluminized steel corrugated pipe arch and round culverts.

Culvert replacement options considered for CAB 2 include:

- 73-inch span by 55-inch rise aluminized corrugated steel pipe arch embedded 2 feet (Q₁₀₀ HW/D=0.41),
- 81-inch span by 59-inch rise aluminized corrugated steel pipe arch embedded 2 feet (Q₁₀₀ HW/D=0.35),
- 6-foot aluminized corrugated steel round pipe embedded 2.9 feet (Q₁₀₀ HW/D=0.34),
- 7-foot aluminized corrugated steel round pipe embedded 3.9 feet (Q₁₀₀ HW/D=0.33).
- A 9-foot, 7-inch span by 4-foot, 1-inch rise aluminum box culvert embedded 2 feet (Q₁₀₀ HW/D=0.62),
- A 10-foot, 0-inch span by 4-foot, 10-inch rise aluminum box culvert embedded 2 feet (Q₁₀₀ HW/D=0.45),
- A 10-foot, 7-inch span by 3-foot,5-inch rise aluminum box culvert embedded 2 feet (Q₁₀₀ HW/D=0.95),
- A 11-foot, 11-inch span by 3-foot, 7-inch rise aluminum box culvert embedded 2 feet (Q₁₀₀ HW/D=0.78),
- A 13-foot, 7-inch span by 4-foot, 7-inch rise aluminum box culvert embedded 2 feet (Q₁₀₀ HW/D=0.47), and

Channel and streambank replacement options considered for CAB 1 include:

- A 4-foot wide, 1V:1.5H slope trapezoidal channel section, with Q₂D₂ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. (Q₂D₂ flow depth=4.15 inches),
- A 7.5-foot wide, 1V:5H slope trapezoidal channel section, with Q₂D₂ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. (Q₂D₂ flow depth=2.90 inches),
- A 10-foot wide, 1V:5H slope trapezoidal channel section, with Q₂D₂ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. (Q₂D₂ flow depth=2.45 inches), and

7.0 RECOMMENDATIONS

7.1.1 CAB 2

Replacing the 3-foot diameter round culvert at the CAB 2 crossing with a 6-foot round aluminized steel culvert is the recommended option for improving fish passage and flood conveyance at the Elsner River Tributary crossing.

This replacement option is anticipated to convey the Q_{100} of 11.7 cfs and the Q_{50} of 10.9 cfs with a HW/D ratio of approximately 0.34 and 0.32, respectively. The round culvert will be embedded 2.9 feet. Minimum allowable cover over the culvert is approximately 2 feet. Roadway overtopping would occur at a flow of approximately 67.51 cfs.

The recommended culvert meets the criteria to accommodate the 100-year flood flow with a HW/D ratio less than 0.8. No overtopping of the existing culvert has been noted during storm events, inferring that flow rerouting or storage of runoff upstream of CAB 2 occurs. The round culvert will provide an adequate span to facilitate construction of an approximately 4-foot-wide channel. The culvert will be embedded with waterway bed material to mimic natural substrate. The waterway bed fill material, which is a mix of selected material, type A and class I riprap will be shaped to retain a 4-foot bankfull width inside the culvert. Reconstructed stream banks upstream and downstream from the culvert will consist of vegetated mats and woody debris where necessary. The embankment slopes will be stabilized with Class I riprap to provide erosion protection.

Aluminized steel pipe was selected due to the higher corrosion resistance and longevity, ease of construction, low cost, and availability.

Table 5: Ratio of Culvert Width to Bankfull Width

Culvert Width	6 feet
Bankfull Width	4 feet
Ratio	1.5

7.1.2 <u>CAB 1</u>

Replacing the 3-foot diameter round culvert at the CAB 1 crossing with a 4-foot wide channel section with 4-foot woody debris banks topped with vegetative mat is the recommended option for improving fish passage and flood conveyance at the Elsner River Tributary crossing.

This replacement option is anticipated to convey the Q_{100} of 11.7 cfs and the Q_{50} of 10.9 cfs with a flow depth of approximately 0.83 feet and 0.80 feet, respectively.

7.2 Rejected Alternatives

7.2.1 CAB 2

The 73-inch span by 55-inch rise pipe arch and the 81-inch span by 59-inch rise pipe arch were considered for the crossing but eliminated due to rise, constructability for placing embedment material and availability. The 7-foot round pipe embedded 3.9 feet was considered but eliminated due to the additional depth of excavation and embedment for minimal additional hydraulic capacity. The 9-foot, 7-inch span by 4-foot, 1-inch rise aluminum box culvert, the 10-foot, 7-inch span by 3-foot, 5-inch rise aluminum box culvert, the 11-foot,11-inch span by 3-foot, 7-inch rise aluminum box culvert were considered for the crossing but eliminated due to over widening of the crossing.

Aluminum and steel structural plate pipe arch and round culvert options were considered but rejected due to higher cost and installation time. Aluminum corrugated pipe arch and round culverts were eliminated due to limited available cover over the pipe.

7.2.2 CAB 1

The 7.5-foot width channel section was considered for the crossing but eliminated due to bankfull width. The 15-foot-wide channel section was considered for the crossing but eliminated due to bankfull width and the Q_2D_2 flow depth being too shallow for the design fish.

8.0 REFERENCES

- Alaska Department of Fish and Game (ADF&G), 2020. Fish Passage Inventory Database (FPID) Inventory and Assessment. [Online]
 Available at: http://www.adfg.alaska.gov/index.cfm?adfg=fishpassage.database [Accessed 01 08 2020].
- Curran, Janet H., Meyer, David F., & Tasker, Gary D. (2003). "Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada." U.S. Geological Survey Water-Resources Investigations Report 03-4188. Anchorage, Alaska.
- Curran, J.H, N.A. Barth, A.G. Veilleux, R.T. Ourso. 2016. Estimating the Magnitude and Frequency at Gaged and Ungagged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012. U.S. Geological Survey Scientific Investigations Report 2016-5024.
- Department of the Army U.S. Army Corps of Engineers (USACE). *Hydraulic Design of Flood Control Channels*. Engineer Manual (EM) 1110-2-1601, June 1994.
- Forest Service Stream Simulation Working Group, 2008. Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road Crossings, San Dimas,

- CA: U.S. Department of Agriculture (USDA), Forest Service, National Technology and Development Program.
- Jones, Stanley H. & Fahl, Charles B. (1994). "Magnitude and Frequency of Floods in Alaska and Conterminous Basins of Canada." U.S. Geological Survey Water-Resources Investigations Report 93-4179. Anchorage, Alaska.
- Northern Geotechnical Engineering Inc. d.b.a Terra Firma Testing., 2019. *Geotechnical Report for USFWS Fish Passage Improvements, Copper River Highway Cordova, Alaska*, Anchorage, AK.
- Rosgen, D.L. (1996). Applied River Morphology, Second Edition, Wildland Hydrology, Pagosa Springs, Colorado.
- Rosgen, D.L. (2007). In Part 654 Stream Restoration Design National Engineering Handbook (210-VI-NEH), J. Bernard, J.F. Fripp & K.R. Robinson (Eds.). USDA Natural Resources Conservation Service, Washington, D.C. Retrieved from: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/restoration/?cid =stelprdb1044707
- Rosgen, D.L. (2008). River Stability Field Guide and River Stability Forms & Worksheets.

 Retrieved from:

 https://wildlandhydrology.com/books/?id=21&course=River+Stability+Field+Guide+and+River+Stability+Forms+%26amp%3B+Worksheets
- U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), 2007. *National Engineering Handbook, Part 654 Stream Restoration Design, Chapter 11: Rosgen Geomorphic Channel Design,* Washington D.C.
- U.S. Department of Agriculture (USDA), Forest Service, 2022. *Personal Communication:* Cordova Gauge Data, Franklin Dekker: Anchorage, AK

APPENDIX A: GEOMORPHIC ANALYSIS

512 - 1024

1024 - 2048

BDRK

20 - 40

40 - 80

Large-Vry Large

Project:	Project Number:
Date: 7/27/2/	Assessed by: FAM/HUR/BMM
Crossing ID: (AB 52 DOWNSWEAW)	7
Weather Conditions: 5° F Cloudy	
CROSSING CHARACTERISTICS:	
Existing Culvert/Crossing: 4' Round Rusted (not smushed), 1' Co OAB2DS	over over pipe, kustling in half Barrel
Geomorphology/Stream Type/Bedform Features:	- felic channel Filling in, namowing
Woody, Step/ POOl	- emanu Beaver activity
Substrate/Bed Mobility: > downstream turns sandy/ovganics Woody dubris	
Floodplain Characteristics/Entrenchment:	
Flow/Velocity Estimates:	
Tie-in Points: DS1 > Flow pan: large Rou DS2 > PIPE OUTLET PEDO	x for velocity

Site:				BLE COUN Reach:	, i				Reach		Reach:		
Party:				Date:					Date:		Date:		
Inches	PARMOLE	Millimeters		DSI PART	SZ2	3 JUNT	TOT#	ITEM % % CUM	TOT#	ITEM % % CUM	TOT#	ITEM %	% CUM
	Silt / Clay	< .062	-8/8			1							
	Very Fine	.062125											
	Fine	.12525	SA	1.0		Last same							
	Medium	.2550	N			!							
	Coarse	.50 - 1.0	D						100 000			1.	
.0408	Very Coarse	1.0 - 2											
.0816	Very Fine	2-4	000000 00000		,	<u> </u>	_						
.1622	Fine	4 - 5.7	30000	/					-			-	
.2231	Fine	5.7 - 8	G		11/1		-1.		1				
.3144	Medium	8 - 11.3	R		THI THIN								
.4463	Medium	11.3 - 16	V	8	WINNIH!						4		1 1
.6389	Coarse	16 - 22.6	SE S	311	TH MIKE								-
.89 - 1.26	Coarse	22.6 - 32	SL.		MINIMIN	1				1.	-	25,00	
1.26 - 1.77	Very Coarse	32 - 45	03030	WWWWW I			1						
1.77 - 2.5	Very Coarse	45 - 64	25.50		MAKI	ļ					1		-
2.5 - 3.5	Small	64 - 90	СОВВ		IMI .	1							
3.5 - 5.0	Small	90 - 128	В	UHTUH IIII							-		-
5.0 - 7.1	Large	128 - 180	B			<u> </u>							-
7.1 - 10.1	Large	180 - 256	制		1	1	-					1.00000	
10.1 - 14.3	Small	256 - 362	BOU						a decision of the second of th			1	
14.3 - 20	Small	362 - 512	Ŭ			<u> </u>				and the second			-

TOTALS ->>

Date:		è					Project Nu	ımber:	
UPSTREAM	REFERENC	E REACH:				,		. *	
Channel Cr	oss Section	Shape:				Channel SI	оре:		
∆ from	Bankfull	Bankfull	Bed	Floodplain	-	1	Channel S	tability Note	es:
Xing	Width	Depth	Width	Width	Rif	files			
	(M) (T) (M) (T) (M) (M) (M)	The state of the s	0000 00 2500000 1100 2000	Action, Management	∆ Xing	Length		<i>x</i> 1	
į.					A Allig	Length	1 .	7 7	
			14					T (A))
							*	2	6
a				9			BFW=4	BFD =	16
							Stability:	1 = lowest	(very temporary)
								5 = highest	(permanent)
	Pools			Ste	ps		R	ibs	Notes:
∆ Xing	Length	Depth	∆ Xing	Height	Type	Stability	∆ Xing	Stability	
					,,	,		,	1
0									
		ū =							
								1	
	5								*
Vegetation WWW.DUK	sprue,	devels di	ob, moss,	alder, wi	NoN				
Bedrock Ol	served:								
							*		
DOWNSTR	FAM REFER	ENCE REAC	H.						2
	oss Section					Channel SI	ono:		
			Dad	Elecalulate		Chainlei 3i		- l- :1:4 NI - 4 -	
∆ from	Bankfull	Bankfull	Bed	Floodplain	D:/	·CI	Channel St	ability Note	es:
Xing	Width	Depth	Width	Width		fles	l		
		. iii			∆ Xing	Length			*
	8					*	1911		
		9							
		9					4		λ.
	740								r v
	*	*				9 =	Stability:		(very temporary)
9.								5 = highest	(permanent)
	Pools			Ste	ps		R	ibs	Notes:
∆ Xing	Length	Depth	∆ Xing	Height	Туре	Stability	∆ Xing	Stability	
		i							
- ,	9	-				1965			
	*			140					
			ē				-		
								3	. **
Vogototion				2					
Vegetation	•								8
D-d-d-C									
Bedrock Ol	served:								
_									74

DOWL

Reference Reach Data Sheet	Revised RDP 0821201
Project:	Project Number:
	Assessed by: TAM/HCL/BMM
Crossing ID: (ABIQ 2 UPStream)	
Weather Conditions: 55° F Cloudy	
CROSSING CHARACTERISTICS:	
Existing Culvert/Crossing: CAB 2 @ Cabin Lake Ed. > Rusted, 48" Lound, (crished, oval now (in let) old trail/kond cultural Res:
CAB LO Old Rd, 3 Round Rusked, 400d sha	upe now 60" Round Aluminum
Geomorphology/Stream Type/Bedform Features:	low how manked: 10-8" deep
Step/pool Livoady delovis steps)	
Substrate/Bed Mobility: SIT/Clay US, or games, keeds Pandwecol, wood	y depris (a 10T(a) bottom) gravel near Banks CABZ
(AB1: gravel/cobble @outlet, no time sedin	and wo woody debrys
Floodplain Characteristics/Entrenchment:	and Willoody debris
- 114 116 U	Mank more entrenched.

Flow/Velocity Estimates:

Tie-in Points: grave Bar @outlet CABI -> 129-151,5' CABZUSI > Pubble count nost Ds of CABI

lto.	Alle a		PEB	BLE COU Reach:	IN I		and delicated			Reach:	BLE COU		Reach:	BLE CC	, OINI	112
Site:				Date:						Date:			Date:			
Party: Inches	PARTICLE	Millimeters		WSI FAST	TICLE	TUUD	TOT#	ITEM %	% CUM	TOT#	ITEM % %	6 CUM	TOT#	ITEM %	% CUM	
Inches	Silt / Clay	< .062	SKG	illi				25.15	1							
E. m	Very Fine	.062125														
	Fine	.12525	S		1	;										THE
	Medium	.2550	A				1									
	Coarse	.50 - 1.0	D						."							200
.0408	Very Coarse	1.0 - 2				1		1								9
.0816	Very Fine	2 - 4	000000 0000000000000000000000000000000								,					REFERENCE
.1622	Fine 4	4 - 5.7	50000	3	!											80
.2231	Fine	5.7 - 8	G	M												3
.3144	Medium	8 - 11.3	R	111	_i							-				60
.4463	Medium	11.3 - 16	8 V 8	§1	1										3-1-3-	100
.6389	Coarse	16 - 22.6		WWW.	1											RESIGN
.89 - 1.26	Coarse	22.6 - 32	S.L.	MINIMI	M:III			-	-				-	-		8
1.26 - 1.77	Very Coarse	32 - 45		jurunun ki	MILITI			-					-	-		80
1.77 - 2.5	Very Coarse	45 - 64	1000	MMMM	I HH I			-	ļ	1				-	-	
2.5 - 3.5	Small	64 - 90	CO	JUK 11 .										-		FIELD
3.5 - 5.0	Small	90 - 128	ВВ	1	<u> </u>			-	-						-	1
5.0 - 7.1	Large	128 - 180	MI H	-	1			-	-					-	1	воок
7.1 - 10.1	Large	180 - 256						1	-			·	1	-	-	×
10.1 - 14.3	Small	256 - 362	B	-					-				-			
14.3 - 20	Small	362 - 512	L	1	-			-			1	-				5-14-
20 - 40 40 - 80	Medium Large-Vry Large	512 - 1024 1024 - 2048	BOULDER	1	-			1								
40 - 60	Bedrock	1024 - 2040	Biblio	11				1.			1		1	The state of	1 21	

WST WIll drop W/S -> Show Before/after WSE CABI was overfrow path how fund for fund of fund of for for from channel outlet, Build noodplain? Rake

Date:							Project Nu	umber:	
UPSTREAM	I REFERENC	E REACH:		20					
Channel Cr	oss Section	Shape:	N ₂			Channel S	lope:		
∆ from	Bankfull	Bankfull	Bed	Floodplain			Channel S	tability Note	es:
Xing	Width	Depth	Width	Width	Ri	fles		7	10, MIN
					∆ Xing	Length	+	,	30' MAX
			150	(4)	AAIIIg	Length			31
1							6	- A	
¥				90				A	10 111
				0				0 4 0	4"
	^							CAB 1	
	in 12 2	1.00m					Stability:		(very temporary)
	N .							5 = highest	t (permanent)
*	Pools	-		Ste	ps		R	ibs	Notes:
∆ Xing	Length	Depth	∆ Xing	Height	Type	Stability	∆ Xing	Stability	
*									1
- 41									
				2				,	
			-						
			V						
							l		
	Carre I.	11/6 6/11/6		211112 12	IDIAL di	d aldla			1000
Vegetation	: fem, ac	MISCHUR	1/1055151	price, voi	11000,00	all, nei	mock	Somon	bernes,
		been.	es .						
Bedrock Ol	oserved:								
		₹		4	61			4	
DOWNSTR	EAM REFER	ENCE REAC	H:			67			
Channel Cr	oss Section	Shape:		*		Channel SI	lope:		
∆ from	Bankfull	Bankfull	Bed	Floodplain			Channel St	tability Note	es:
Xing	Width	Depth	Width	Width	Rif	fles		,	
					∆ Xing	Length	1		
-					A AIIIB	Length	1		
-									
			*	-				•	
h ,	.4								
		,				ş.	Stability:		(very temporary)
				,				5 = highest	: (permanent)
	Pools			Ste	ps		R	ibs	Notes:
∆ Xing	Length	Depth	∆ Xing	Height	Type	Stability	∆ Xing	Stability	
-						-	-		
			10.1	ä					
•								9	
1. 1		_							
								*	
Vegetation	1 / _V								
vegetation	•	*							
Bedrock Ol	oserved:								
				• •					,

			1	7			Project No	umber:	
	M REFERENC								
	cross Section			1.0	·	Channel S	lope:	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
∆ from	Bankfull	Bankfull	Bed	Floodplain	4		Channel S	tability Not	es:
Xing	Width	Depth	Width	Width	Rit	ffles			
*					∆ Xing	Length	100		
		- E				8 .			
			=			-	****		
	_		10 81 1						
* *		1 4. A							
1.57			* (*)		4.	, , ,	Stability:	1 = lowest	(very temporary)
	1			a	\$			5 = highes	t (permanent)
(4)	Pools		Steps				R	ibs	Notes:
∆ Xing	Length	Depth	∆ Xing	Height	Туре	Stability	∆ Xing	Stability	inotes.
				- Transpire	.,,,,,	Stability	AAIIIg	Stability	* * * * * * * * * * * * * * * * * * * *
		ie i s							
									2
				-	,				ž.
	i A				×	*		(*)	*
		E con to			-				* /*
	bserved:							8	
WNSTR	EAM REFER		1:			Shara Lol	2		1
OWNSTR annel Cr	EAM REFER	Shape:	. * "	Eloodulain	S 192	Channel Sl	The second secon		
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed	Floodplain Width	ALT.		The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER	Shape:	. * "	Floodplain Width	Riff	les	The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		ALT.		The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		Riff	les	The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		Riff	les	The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		Riff	les	The second secon	ability Note	es:
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		Riff	les Length	Channel St		
WNSTR annel Cr	EAM REFER oss Section Bankfull	Shape: Bankfull	Bed		Riff	les Length	Channel St	1 = lowest (very temporary)
WNSTR	EAM REFER oss Section Bankfull Width	Shape: Bankfull	Bed	Width	Riff	les Length	Channel St	1 = lowest (5 = highest	very temporary) (permanent)
OWNSTR annel Cr A from Xing	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary)
oWNSTR annel Cr from Xing	EAM REFER oss Section Bankfull Width	Shape: Bankfull	Bed	Width	Riff	les Length	Channel St	1 = lowest (5 = highest	very temporary) (permanent)
OWNSTR annel Cr A from Xing	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
OWNSTR annel Cr A from Xing	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
WNSTR annel Cr	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
OWNSTR annel Cr A from Xing	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
oWNSTR annel Cr from Xing	EAM REFER Toss Section Bankfull Width	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
WNSTR annel Cr from Xing	Pools Length	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)
WNSTR annel Cr from Xing	Pools Length	Shape: Bankfull Depth	Bed Width	Width	Riff Δ Xing	les Length	Channel St Stability:	1 = lowest (5 = highest bs	very temporary) (permanent)

Shew I DS 7/21/21 -1013 OF AM OBSCINED goat camp Road Millon Jalden Javasses Johns Pipe Submeraco gravel bar a out ut 2 madents Pond merges (a n260) 2000 COUNT ON PIFFU 35" OS can mureuse goat camp road even, of copper free manner to

4 existing which Rus man and Banel -WSE M V4 Barre) -large boulder unside -4-51 cover @ 1/1 Person count @ 1021 Riffle SUNPUSUS 15 1 2001 to short he in 4 go up new channel for 2: Riftel Pools of marsh 3: granel-colore gorganics/tahmic i. no set reach use shert ket reach a do syn width or DIA memod all mark us no culters on goal Road US 7. avusses, Reeds, whon/Ad

COPADS 7/21/21
- Placed Pock a Dutced of Pippar Cussis Reference Read DS 13001 to 400 approx. 100 u 3 Reference cetta

Call Con Mile-gustavus, mants opdake Cost est- for grando a's farm Road 1AB1/2US - APPROX IFT COVER, ON PEPE tomanas est to parale estimate, - G SURVEY TEMBER WEER potentially held to waate plans CONSTRUCTION ACCESS FOR CABI VEA ROAD/ LACE PATT Tomes a cop 20 - 25 advice ? Cultoral RESOURCE TOR TZUNBER WEZD -> add removal of smitures and POTENTEN UPWELZNE CURVEY - 95T LAP OF PZPE ZNUERO La Plan Mich EUZNEN -300' wasneamy by ACK A RANKZEN FOUL

APPENDIX B: SUBSTRATE DESIGN

New Stream Channel Design (Culvert, Rock Ramp) - CAB 1

Using Corps of Engineers Equations - FHWA Circular on Development in the River System - Page 6.25. FHWA NHI 01-004; River Engineering for Highway Encroachments, 2001 nttp://www.fhwa.dot.gov/engineering/hydraulics/library_arc.cfm?pub_number=8&id=20 Safety Factor Stability Coefficient for Incipient Failure 0.3 (0.36 round rock, 0.3 angular rock) Vertical Velocity Distribution Coeff 1.00 (1.0 for straight channels) (1xD100 or 1.5 or D50 max, whichever is greater) Blanket Thickness Coeff 1 ft for 100 year event Local depth of flow Unit Weight of water 62.4 lb/ft^3 assumed Unit weight of rock 165 lb/ft^3 assumed Local depth-average velocity ft/s from 100-year event avg. velocity in pipe 12 Side Slope correction factor Gravitational Acceleration 32.2 ft/s^2 D85/D15 (1.7-5.2) D50/D30 Note: This method is based on the minimum D30 size Riprap Design Method - Selecting Proper Gradation, Page 131. Design Hydrology and Sedimentology for Small Catchments, Haan, Barfield and Hayes, 1981 D15 1.0 inches D30 0.0 ft 1.0 inches D50 0.0 ft 1.0 inches D85 0.0 ft 1.0 inches D100 0.0 1.0 inches ft Using D50 size, used FHWA circular for Rip Rap design to spec out D100, D85 and D15. D100 = 2.0D50

Approximate depth-average flow for outlet velocities

Fuller-Thompson Estimating for Maximum Density:

D100 (inches)

D30

D30 Rea'd

<mark>12.0</mark>

Method Adapted from US Forest Service Stream Simulation Guidelines

5.0 1.0

Stability (D30):	OK

_			Doo Neq u	1.0				
YELLOW ARE INPUTS			COARS	SE MATERIA	AL		FINES	
		Type IV Rip Rap	Type III Rip Rap	Type II Rip	Type I Rip Ra	FA	Combined %	F-T EQN
	RELATIVE % =	0	0	0.0000	0.5000	0.5000	1.0000	
Size (inches)	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing
54	54 in	1.00	1.00	1.00	1.00	1.00	100%	212%
48	48 in	0.90	1.00	1.00	1.00	1.00	100%	200%
34	34 in	0.50	1.00	1.00	1.00	1.00	100%	168%
30	30 in	0.35	0.90	1.00	1.00	1.00	100%	158%
24	24 in	0.25	0.50	1.00	1.00	1.00	100%	141%
20	20 in	0.15	0.15	0.90	1.00	1.00	100%	129%
16	16 in	0.00	0.00	0.50	1.00	1.00	100%	115%
12	12 in	0.00	0.00	0.15	1.00	1.00	100%	100%
10	10 in	0.00	0.00	0.00	0.90	1.00	95%	91%
8	8 in	0.00	0.00	0.00	0.50	1.00	75%	82%
5	5 in	0.00	0.00	0.00	0.20	1.00	60%	65%
3	3 in	0.00	0.00	0.00	0.10	1.00	55%	50%
1	1 in	0.00	0.00	0.00	0.00	0.65	33%	29%
0.75	0.75 in	0.00	0.00	0.00	0.00	0.50	25%	25%
0.187	#4	0.00	0.00	0.00	0.00	0.25	13%	12%
0.0787	#10 Sand	0.00	0.00	0.00	0.00	0.15	8%	8%
						FA: Porous Back	kfill	

Gradation values should be within +/-5% of this gradation (Rice)

AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for Graph & Fuller-Thomson Eqn					
Size (in)	Combined % pa F-T	equation			
54.000	100%	212%			
48.000	100%	200%			
34.000	100%	168%			
30.000	100%	158%			
24.000	100%	141%			
20.000	100%	129%			
16.000	100%	115%			
12.000	100%	100%			
10.000	95%	91%			
8.000	75%	82%			
5.000	60%	65%			
3.000	55%	50%			
1.000	33%	29%			
0.750	25%	25%			
0.187	13%	12%			
0.079	8%	8%			

New Stream Channel Design (Culvert, Rock Ramp) - CAB 2

YELLOW ARE INPUTS					
Safety Factor	1.5				
Stability Coefficient for Incipient Failure	0.3	(0.36 round	rock, 0.3 angular ro	ck)	
Vertical Velocity Distribution Coeff	1.00	(1.0 for stra	ight channels)		
Blanket Thickness Coeff	1	(1xD100 or	1.5 or D50 max, whi	ichever is greater)	
Local depth of flow	0.5	ft for 100 ye	ear event		
Unit Weight of water	62.4	lb/ft^3	assumed		
Unit weight of rock	165	lb/ft^3	assumed		
Local depth-average velocity	2	ft/s from 10	0-year event avg. ve	locity in pipe	Approximate depth-average flo
Side Slope correction factor	1				for outlet velocities
Gravitational Acceleration	32.2	ft/s^2			
D85/D15	5	(1.7-5.2)			
D50/D30	2				
Note: This method is based on the minimul	n D30 size				
Riprap Design Method - Selecting Proper G	radation, Pag	je 131.			
Design Hydrology and Sedimentology for S	mall Catchme	ents, Haan, Barl	field and Hayes, 198	1.	
DAF	0.0		1.0	inahaa	
D15	0.0	ft	1.0	inches	
D30	0.0	ft	1.0	inches	
D50	0.0	ft	1.0	inches	
D85	0.1	ft	1.0	inches	
D100	0.1	ft	1.0	inches	

Fuller-Thompson Estimating for Maximum Density:

D100 (inches)

12.0

Method Adapted from US Forest Service	Stream Simulation Guidelines	D30	5.0	Stability (D30):
		D30 Req'd	1.0	-
YELLOW ARE INPUTS		COARS	SE MATERIAL	FINES

YELLOW ARE INPUTS			COAR	SE MATERIA	AL		FINES	
-		Type IV Rip Rap	Type III Rip Rap	Type II Rip	Type I Rip Ra	FA	Combined %	F-T EQN
	RELATIVE % =	0	0	0.0000	0.5000	0.5000	1.0000	
Size (inches)	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing
54	54 in	1.00	1.00	1.00	1.00	1.00	100%	212%
48	48 in	0.90	1.00	1.00	1.00	1.00	100%	200%
34	34 in	0.50	1.00	1.00	1.00	1.00	100%	168%
30	30 in	0.35	0.90	1.00	1.00	1.00	100%	158%
24	24 in	0.25	0.50	1.00	1.00	1.00	100%	141%
20	20 in	0.15	0.15	0.90	1.00	1.00	100%	129%
16	16 in	0.00	0.00	0.50	1.00	1.00	100%	115%
12	12 in	0.00	0.00	0.15	1.00	1.00	100%	100%
10	10 in	0.00	0.00	0.00	0.90	1.00	95%	91%
8	8 in	0.00	0.00	0.00	0.50	1.00	75%	82%
5	5 in	0.00	0.00	0.00	0.20	1.00	60%	65%
3	3 in	0.00	0.00	0.00	0.10	1.00	55%	50%
1	1 in	0.00	0.00	0.00	0.00	0.65	33%	29%
0.75	0.75 in	0.00	0.00	0.00	0.00	0.50	25%	25%
0.187	#4	0.00	0.00	0.00	0.00	0.25	13%	12%
0.0787	#10 Sand	0.00	0.00	0.00	0.00	0.15	8%	8%
					•	FA: Porous Bac	kfill	

Gradation values should be within +/-5% of this gradation (Rice)
AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for G	DATA for Graph & Fuller-Thomson Eqn					
Size (in)	Combined % pa F-T	equation				
54.000	100%	212%				
48.000	100%	200%				
34.000	100%	168%				
30.000	100%	158%				
24.000	100%	141%				
20.000	100%	129%				
16.000	100%	115%				
12.000	100%	100%				
10.000	95%	91%				
8.000	75%	82%				
5.000	60%	65%				
3.000	55%	50%				
1.000	33%	29%				
0.750	25%	25%				
0.187	13%	12%				
0.079	8%	8%				

OK

APPENDIX C: HYDROLOGIC ANALYSIS

	Cordova Hydrology - CAB 1 & 2						
Percent chance exceedance	Recurrence interval	2016 Regression (cfs)	2003 Regression (cfs)	Win TR-55 (cfs)	CAB3 Gage Record	Peak Q Coorelated to USGS Gage 15min	Peak Q from coorelation t daily rainfal 10 day sum
	Q2D2	5.04	9.37	6.53	1.88	2.51	1.09
50	2	12.6	23.4	16.3	4.7	6.3	2.7
20	5	22.3	31.6	23.8	5.8	8.0	3.5
10	10	30.0	37.1	30.0	6.5	9.0	4.0
4	25	41.0	44.0	38.9	7.4	10.1	4.6
2	50	49.8	49.1	46.2	8.0	10.9	5.0
1	100	59.7	54.1	53.9	8.7	11.7	5.4
0.5	200	69.8	59.3		9.4	12.4	5.8
0.2	500	84.4	66.0				

	Cordova Hydrology - COP 9 and SHER 1							
					COP9			
D					Measured			
Percent chance	Recurrence	2016 Regression (cfs)	2003 Regression		Discharge	COP9 Gage		
exceedance	interval	20 16 Regression (CIS)	(cfs)		Coorelated to	Daily to USGS		
CACCCUALICE					USGS Gage	Gage Daily		
				COP9 Gage Record	15min (cfs)	(cfs)		
	Q2D2	32.56	43.81	5.67	7.30	4.75		
50	2	81.4	109.5	14.2	18.3	11.9		
20	5	131.0	145.3	25.8	24.0	15.5		
10	10	169.0	169.9	35.1	27.4	17.7		
4	25	221.0	200.8	48.5	31.5	20.3		
2	50	261.0	224.1	59.6	34.4	22.2		
1	100	305.0	246.4	71.7	37.1	23.9		
0.5	200	350.0	270.5	84.8	39.8	25.6		
0.2	500	413.0	301.3					

APPENDIX D: HYDRAULIC ANALYSIS

Existing Culvert

CAB 1	- 36" CMP
	Existing Culvert
Culvert Inlet Invert Elevation	55.1
Culvert Inlet Thalweg Elevation	55.1
Culvert Height(ft)	3.0
Embedment (ft)	0.0
D (Depth to top of embedment, ft)	3.0
Q2D	2 = 2.51
Headwater Elevation	55.9
HW (to embedment, ft)	0.8
HW/D (to top of embedment)	0.27
Q	2 = 6.3
Headwater Elevation	56.4
HW (to embedment, ft)	1.3
HW/D (to top of embedment)	0.43
Q	5 = 8.0
Headwater Elevation	56.6
HW (to embedment, ft)	1.5
HW/D (to top of embedment)	0.49
Q	10 = 9
Headwater Elevation	56.7
HW (to embedment, ft)	1.6
HW/D (to top of embedment)	0.52
Q25	5 = 10.1
Headwater Elevation	56.8
HW (to embedment, ft)	1.7
HW/D (to top of embedment)	0.56
Q5(0 = 10.9
Headwater Elevation	56.8
HW (to embedment, ft)	1.7
HW/D (to top of embedment)	0.58
Q10	00 = 11.7
Headwater Elevation	56.9
HW (to embedment, ft)	1.8
HW/D (to top of embedment)	0.60

Overtopping (cfs)	45.09

65% Proposed

	CAR 4 72 CAR
	CAB 1 - 72" CMP
	Proposed Culvert
	(Embedded)
Culvert Inlet Invert Elevation	50.9
Culvert Inlet Thalweg Elevation	53.8
Culvert Height(ft)	6.0
Embedment (ft)	2.9
D (Depth to top of embedment, ft)	3.1
	Q2D2 = 2.51
Headwater Elevation	54.2
HW (to embedment, ft)	0.4
HW/D (to top of embedment)	0.11
	Q2 = 6.3
Headwater Elevation	54.5
HW (to embedment, ft)	0.7
HW/D (to top of embedment)	0.21
	Q5 = 8.0
Headwater Elevation	54.6
HW (to embedment, ft)	3.0
HW/D (to top of embedment)	0.26
	Q10 = 9
Headwater Elevation	54.7
HW (to embedment, ft)	0.0
HW/D (to top of embedment)	0.28
	Q25 = 10.1
Headwater Elevation	54.8
HW (to embedment, ft)	0.0
HW/D (to top of embedment)	0.31
	Q50 = 10.9
Headwater Elevation	54.8
HW (to embedment, ft)	1.0
HW/D (to top of embedment)	0.32
,	Q100 = 11.7
Headwater Elevation	54.9
HW (to embedment, ft)	1,1
HW/D (to top of embedment)	0.34
, = (to top o. chilocoment)	0.5-

Overtopping (cfs)	67.51

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: User Defined

Table 1 - Summary of Culvert Flows at Crossing: CAB 2 Existing 36

Headwater Elevation (ft)	Total Discharge (cfs)	Existing 36 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
55.90	2.51	2.51	0.00	1
56.40	6.30	6.30	0.00	1
56.58	8.00	8.00	0.00	1
56.67	9.00	9.00	0.00	1
56.77	10.10	10.10	0.00	1
56.84	10.90	10.90	0.00	1
56.91	11.70	11.70	0.00	1
59.22	45.09	45.09	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Existing 36

Total Rating Curve Crossing: CAB 2 Existing 36

Culvert Data: Existing 36

Table 1 - Culvert Summary Table: Existing 36

				- 0							
Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s	Tailw ater Veloc ity (ft/s)
2.51 cfs	2.51 cfs	55.90	0.71	0.79 9	2- M2 c	0.52	0.49	0.4 9	0.40	3.31	2.10
6.30 cfs	6.30 cfs	56.40	1.16	1.29 9	2- M2 c	0.82	0.79	0.7 9	0.74	4.25	2.84
8.00 cfs	8.00 cfs	56.58	1.31	1.47 5	2- M2 c	0.93	0.89	0.8 9	0.87	4.55	3.05
9.00 cfs	9.00 cfs	56.67	1.40	1.57 2	2- M2 c	0.98	0.95	0.9 5	0.95	4.70	3.16
10.10 cfs	10.10 cfs	56.77	1.49	1.67 2	2- M2 c	1.05	1.01	1.0	1.03	4.86	3.26
10.90 cfs	10.90 cfs	56.84	1.55	1.74 3	2- M2 c	1.09	1.05	1.0 5	1.09	4.97	3.34
11.70 cfs	11.70 cfs	56.91	1.61	1.81 1	2- M2 c	1.13	1.09	1.0 9	1.15	5.07	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 55.10 ft,

Outlet Elevation (invert): 54.70 ft

Culvert Length: 35.00 ft,

Culvert Slope: 0.0114

Culvert Performance Curve Plot: Existing 36

Water Surface Profile Plot for Culvert: Existing 36

Crossing - CAB 2 Existing 36, Design Discharge - 11.7 cfs
Culvert - Existing 36, Culvert Discharge - 11.7 cfs

Site Data - Existing 36

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 55.10 ft

Outlet Station: 35.00 ft

Outlet Elevation: 54.70 ft

Number of Barrels: 1

Culvert Data Summary - Existing 36

Barrel Shape: Circular

Barrel Diameter: 3.00 ft

Barrel Material: Corrugated Steel

Embedment: 0.00 in

Barrel Manning's n: 0.0240

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting (Ke=0.9)

Inlet Depression: None

Tailwater Data for Crossing: CAB 2 Existing 36

Table 2 - Downstream Channel Rating Curve (Crossing: CAB 2 Existing 36)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
2.51	53.89	0.40	2.10	0.28	0.59
6.30	54.23	0.74	2.84	0.53	0.58
8.00	54.36	0.87	3.05	0.62	0.58
9.00	54.44	0.95	3.16	0.68	0.57
10.10	54.52	1.03	3.26	0.73	0.57
10.90	54.58	1.09	3.34	0.77	0.56
11.70	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Existing 36

Tailwater Channel Option: Rectangular Channel

Bottom Width: 3.00 ft

Channel Slope: 0.0114

Channel Manning's n: 0.0350

Channel Invert Elevation: 53.49 ft

Roadway Data for Crossing: CAB 2 Existing 36

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 59.22 ft

Roadway Surface: Paved

Roadway Top Width: 26.00 ft

Crossing Discharge Data

Discharge Selection Method: User Defined

Table 3 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 6'

Headwater	Total	Proposed 6'	Roadway	Iterations
Elevation (ft)	Discharge	Discharge	Discharge	
	(cfs)	(cfs)	(cfs)	

54.18	2.51	2.51	0.00	1
54.49	6.30	6.30	0.00	1
54.62	8.00	8.00	0.00	1
54.69	9.00	9.00	0.00	1
54.77	10.10	10.10	0.00	1
54.83	10.90	10.90	0.00	1
54.88	11.70	11.70	0.00	1
59.22	67.51	67.51	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 6'

Culvert Data: Proposed 6'

Table 2 - Culvert Summary Table: Proposed 6'

Total	Culve	Head	Inle	<u> </u>	Fl	Nor	Criti	Out	Tailw	Outl	Tailw
Disch	rt	water	t	et	ow	mal	cal	let	ater	et	ater
arge (cfs)	Disch arge	Elevat ion	Cont rol	Cont rol	Ty pe	Dep th	Dep th	De pth	Dept h (ft)	Velo city	Veloc ity
(CIS)	(cfs)	(ft)	Dep	Dep	pe	(ft)	(ft)	(ft)	II (IL)	(ft/s	(ft/s)
			th	th) '	
			(ft)	(ft)							
2.51	2.51	54.18	0.26	0.35	3-	0.28	0.18	0.4	0.40	1.05	2.10
cfs	cfs			1	M1			0			
					t						

6.30 cfs	6.30 cfs	54.49	0.53	0.66	3- M1 t	0.49	0.33	0.7 4	0.74	1.43	2.84
8.00 cfs	8.00 cfs	54.62	0.65	0.78 7	3- M1 t	0.57	0.38	8.0	0.87	1.54	3.05
9.00 cfs	9.00 cfs	54.69	0.71	0.86 1	3- M1 t	0.62	0.41	0.9 5	0.95	1.60	3.16
10.10 cfs	10.10 cfs	54.77	0.78	0.94 1	3- M1 t	0.66	0.45	1.0	1.03	1.66	3.26
10.90 cfs	10.90 cfs	54.83	0.83	0.99 8	3- M1 t	0.70	0.47	1.0 9	1.09	1.70	3.34
11.70 cfs	11.70 cfs	54.88	0.87	1.05 5	3- M1 t	0.73	0.49	1.1 5	1.15	1.74	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 53.83 ft,

Outlet Elevation (invert): 53.49 ft

Culvert Length: 46.00 ft,

Culvert Slope: 0.0074

Culvert Performance Curve Plot: Proposed 6'

Water Surface Profile Plot for Culvert: Proposed 6'

Crossing - CAB 2 Proposed 6', Design Discharge - 11.7 cfs Culvert - Proposed 6', Culvert Discharge - 11.7 cfs

Site Data - Proposed 6'

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 50.91 ft

Outlet Station: 46.00 ft

Outlet Elevation: 50.57 ft

Number of Barrels: 1

Culvert Data Summary - Proposed 6'

Barrel Shape: Circular

Barrel Diameter: 6.00 ft

Barrel Material: Corrugated Steel

Embedment: 35.02 in

Barrel Manning's n: 0.0240 (top and sides)

Manning's n: 0.0350 (bottom)

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting (Ke=0.9)

Inlet Depression: None

Tailwater Data for Crossing: CAB 2 Proposed 6'

Table 4 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 6')

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
2.51	53.89	0.40	2.10	0.28	0.59
6.30	54.23	0.74	2.84	0.53	0.58
8.00	54.36	0.87	3.05	0.62	0.58
9.00	54.44	0.95	3.16	0.68	0.57
10.10	54.52	1.03	3.26	0.73	0.57
10.90	54.58	1.09	3.34	0.77	0.56
11.70	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 6'

Tailwater Channel Option: Rectangular Channel

Bottom Width: 3.00 ft

Channel Slope: 0.0114

Channel Manning's n: 0.0350

Channel Invert Elevation: 53.49 ft

Roadway Data for Crossing: CAB 2 Proposed 6'

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 59.22 ft

Roadway Surface: Paved

Roadway Top Width: 26.00 ft

Crossing Discharge Data

Discharge Selection Method: User Defined

Table 5 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 7'

Headwater	Total	Proposed 7'	Roadway	Iterations
-----------	-------	-------------	---------	------------

Elevation (ft)	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)	
54.17	2.51	2.51	0.00	1
54.48	6.30	6.30	0.00	1
54.60	8.00	8.00	0.00	1
54.68	9.00	9.00	0.00	1
54.76	10.10	10.10	0.00	1
54.81	10.90	10.90	0.00	1
54.87	11.70	11.70	0.00	1
59.22	63.30	63.30	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 7'

Culvert Data: Proposed 7'

Table 3 - Culvert Summary Table: Proposed 7'

Total Disch arge (cfs)	Culve rt Disch arge (cfs)		t	et Cont	ow Ty	mal		let De	Tailw ater Dept h (ft)	et	Tailw ater Veloc ity (ft/s)
2.51	2.51	54.17	0.26	0.34	3-	0.27	0.17	0.4	0.40	1.01	2.10

cfs	cfs			1	M1 t			0			
6.30 cfs	6.30 cfs	54.48	0.54	0.64 6	3- M1 t	0.48	0.32	0.7 4	0.74	1.38	2.84
8.00 cfs	8.00 cfs	54.60	0.65	0.77	3- M1 t	0.56	0.37	8.0	0.87	1.50	3.05
9.00 cfs	9.00 cfs	54.68	0.72	0.84 7	3- M1 t	0.60	0.40	0.9 5	0.95	1.55	3.16
10.10 cfs	10.10 cfs	54.76	0.78	0.92 7	3- M1 t	0.65	0.44	1.0	1.03	1.61	3.26
10.90 cfs	10.90 cfs	54.81	0.83	0.98 5	3- M1 t	0.68	0.46	1.0 9	1.09	1.66	3.34
11.70 cfs	11.70 cfs	54.87	0.88	1.04	3- M1 t	0.71	0.48	1.1 5	1.15	1.70	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 53.83 ft,

Outlet Elevation (invert): 53.49 ft

Culvert Length: 46.00 ft,

Culvert Slope: 0.0074

Culvert Performance Curve Plot: Proposed 7'

Water Surface Profile Plot for Culvert: Proposed 7'

Crossing - CAB 2 Proposed 7', Design Discharge - 11.7 cfs
Culvert - Proposed 7', Culvert Discharge - 11.7 cfs

Site Data - Proposed 7'

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 49.91 ft

Outlet Station: 46.00 ft

Outlet Elevation: 49.57 ft

Number of Barrels: 1

Culvert Data Summary - Proposed 7'

Barrel Shape: Circular

Barrel Diameter: 5.81 ft

Barrel Material: Corrugated Steel

Embedment: 47.03 in

Barrel Manning's n: 0.0240 (top and sides)

Manning's n: 0.0350 (bottom)

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting (Ke=0.9)

Inlet Depression: None

Tailwater Data for Crossing: CAB 2 Proposed 7'

Table 6 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 7')

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
2.51	53.89	0.40	2.10	0.28	0.59
6.30	54.23	0.74	2.84	0.53	0.58
8.00	54.36	0.87	3.05	0.62	0.58
9.00	54.44	0.95	3.16	0.68	0.57
10.10	54.52	1.03	3.26	0.73	0.57
10.90	54.58	1.09	3.34	0.77	0.56
11.70	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 7'

Tailwater Channel Option: Rectangular Channel

Bottom Width: 3.00 ft

_ _ _ . . .

Channel Slope: 0.0114

Channel Manning's n: 0.0350

Channel Invert Elevation: 53.49 ft

Roadway Data for Crossing: CAB 2 Proposed 7'

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 59.22 ft

Roadway Surface: Paved

Roadway Top Width: 26.00 ft

Crossing Discharge Data

Discharge Selection Method: User Defined

Table 7 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 81x59

Headwater	Total	Proposed	Roadway	Iterations	
-----------	-------	----------	---------	-------------------	--

Elevation (ft)	Discharge (cfs)	81x59 Discharge (cfs)	Discharge (cfs)	
54.15	2.51	2.51	0.00	1
54.45	6.30	6.30	0.00	1
54.57	8.00	8.00	0.00	1
54.65	9.00	9.00	0.00	1
54.73	10.10	10.10	0.00	1
54.79	10.90	10.90	0.00	1
54.85	11.70	11.70	0.00	1
59.22	67.15	67.15	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 81x59

Culvert Data: Proposed 81x59

Table 4 - Culvert Summary Table: Proposed 81x59

		Head water								
		Elevat								
(cfs)		ion			-	-		-		
	(cfs)	(ft)	_		(ft)	(ft)	(ft)		(ft/s	(ft/s)
			th (ft)	th (ft)					J	

2.51 cfs	2.51 cfs	54.15	0.27	0.32 5	3- M1 t	0.26	0.16	0.4	0.40	0.94	2.10
6.30 cfs	6.30 cfs	54.45	0.54	0.62 6	3- M1 t	0.47	0.30	0.7 4	0.74	1.30	2.84
8.00 cfs	8.00 cfs	54.57	0.64	0.75 5	3- M1 t	0.55	0.35	0.8 7	0.87	1.41	3.05
9.00 cfs	9.00 cfs	54.65	0.69	0.82 9	3- M1 t	0.59	0.38	0.9 5	0.95	1.47	3.16
10.10 cfs	10.10 cfs	54.73	0.75	0.91	3- M1 t	0.64	0.41	1.0	1.03	1.53	3.26
10.90 cfs	10.90 cfs	54.79	0.79	0.96 8	3- M1 t	0.67	0.43	1.0 9	1.09	1.57	3.34
11.70 cfs	11.70 cfs	54.85	0.83	1.02 6	3- M1 t	0.70	0.45	1.1 5	1.15	1.61	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 53.82 ft,

Outlet Elevation (invert): 53.49 ft

Culvert Length: 46.00 ft,

Culvert Slope: 0.0072

Culvert Performance Curve Plot: Proposed 81x59

Water Surface Profile Plot for Culvert: Proposed 81x59

Crossing - CAB 2 Proposed 81x59, Design Discharge - 11.7 cfs Culvert - Proposed 81x59, Culvert Discharge - 11.7 cfs

Site Data - Proposed 81x59

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 51.82 ft

Outlet Station: 46.00 ft

Outlet Elevation: 51.49 ft

Number of Barrels: 1

Culvert Data Summary - Proposed 81x59

Barrel Shape: Pipe Arch

Barrel Span: 80.37 in

Barrel Rise: 59.00 in

Barrel Material: Steel or Aluminum

Embedment: 24.00 in

Barrel Manning's n: 0.0280 (top and sides)

Manning's n: 0.0350 (bottom)

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting (Ke=0.9)

Inlet Depression: None

Tailwater Data for Crossing: CAB 2 Proposed 81x59

Table 8 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 81x59)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
2.51	53.89	0.40	2.10	0.28	0.59
6.30	54.23	0.74	2.84	0.53	0.58
8.00	54.36	0.87	3.05	0.62	0.58
9.00	54.44	0.95	3.16	0.68	0.57
10.10	54.52	1.03	3.26	0.73	0.57
10.90	54.58	1.09	3.34	0.77	0.56
11.70	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 81x59

Tailwater Channel Option: Rectangular Channel

Bottom Width: 3.00 ft

Channel Slope: 0.0114

Channel Manning's n: 0.0350

Channel Invert Elevation: 53.49 ft

Roadway Data for Crossing: CAB 2 Proposed 81x59

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 59.22 ft

Roadway Surface: Paved

Roadway Top Width: 26.00 ft

Crossing Discharge Data

Discharge Selection Method: User Defined

Table 9 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 73x55

Headwater Elevation (ft)	Total Discharge (cfs)	Proposed 73x55 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
54.17	2.51	2.51	0.00	1
54.48	6.30	6.30	0.00	1
54.61	8.00	8.00	0.00	1
54.68	9.00	9.00	0.00	1
54.76	10.10	10.10	0.00	1
54.82	10.90	10.90	0.00	1
54.88	11.70	11.70	0.00	1
59.22	60.77	60.77	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 73x55

Culvert Data: Proposed 73x55

Table 5 - Culvert Summary Table: Proposed 73x55

Total	Culve	Head	Inle	Outl	Fl	Nor	Criti	Out	Tailw	Outl	Tailw
Disch	rt	water	t	et	ow	mal	cal	let	ater	et	ater
arge	Disch	Elevat	Cont	Cont	Ty	Dep	Dep	De	Dept	Velo	Veloc
(cfs)	arge	ion	rol	rol	pe	th	th	pth	h (ft)	city	ity
	(cfs)	(ft)	Dep	Dep		(ft)	(ft)	(ft)		(ft/s	(ft/s)

			th (ft)	th (ft))	
2.51 cfs	2.51 cfs	54.17	0.30	0.34	3- M1 t	0.28	0.17	0.4	0.40	1.04	2.10
6.30 cfs	6.30 cfs	54.48	0.58	0.65 6	3- M1 t	0.50	0.32	0.7 4	0.74	1.42	2.84
8.00 cfs	8.00 cfs	54.61	0.69	0.78 5	3- M1 t	0.58	0.38	0.8 7	0.87	1.53	3.05
9.00 cfs	9.00 cfs	54.68	0.74	0.86	3- M1 t	0.63	0.41	0.9 5	0.95	1.60	3.16
10.10 cfs	10.10 cfs	54.76	0.80	0.94	3- M1 t	0.67	0.44	1.0	1.03	1.66	3.26
10.90 cfs	10.90 cfs	54.82	0.84	1.00 1	3- M1 t	0.71	0.46	1.0 9	1.09	1.71	3.34
11.70 cfs	11.70 cfs	54.88	0.88	1.06	3- M1 t	0.74	0.49	1.1 5	1.15	1.75	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert

Inlet Elevation (invert): 53.82 ft,

Outlet Elevation (invert): 53.49 ft

Culvert Length: 46.00 ft,

Culvert Slope: 0.0072

Culvert Performance Curve Plot: Proposed 73x55

Water Surface Profile Plot for Culvert: Proposed 73x55

Crossing - CAB 2 Proposed 73x55, Design Discharge - 11.7 cfs Culvert - Proposed 73x55, Culvert Discharge - 11.7 cfs

Site Data - Proposed 73x55

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 51.82 ft

Outlet Station: 46.00 ft

Outlet Elevation: 51.49 ft

Number of Barrels: 1

Culvert Data Summary - Proposed 73x55

Barrel Shape: Pipe Arch

Barrel Span: 73.00 in

Barrel Rise: 55.00 in

Barrel Material: Steel or Aluminum

Embedment: 24.00 in

Barrel Manning's n: 0.0280 (top and sides)

Manning's n: 0.0350 (bottom)

Culvert Type: Straight

Inlet Configuration: Thin Edge Projecting (Ke=0.9)

Inlet Depression: None

Tailwater Data for Crossing: CAB 2 Proposed 73x55

Table 10 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 73x55)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
2.51	53.89	0.40	2.10	0.28	0.59
6.30	54.23	0.74	2.84	0.53	0.58
8.00	54.36	0.87	3.05	0.62	0.58
9.00	54.44	0.95	3.16	0.68	0.57
10.10	54.52	1.03	3.26	0.73	0.57
10.90	54.58	1.09	3.34	0.77	0.56
11.70	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 73x55

Tailwater Channel Option: Rectangular Channel

Bottom Width: 3.00 ft

Channel Slope: 0.0114

Channel Manning's n: 0.0350

Channel Invert Elevation: 53.49 ft

Roadway Data for Crossing: CAB 2 Proposed 73x55

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 59.22 ft

Roadway Surface: Paved

Roadway Top Width: 26.00 ft

CAB 1 Channel Section Design October 2022

	Low Flow Depths																
STA	IDENTIFIER	Qfish (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	х	side slope (H:V)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	2.510	Trapezoid	1.560696	0.30989	0.005	0.0300	4	0.35	4.15	5.036286	0.518143	1.5:1	0.67	2.51	0.000	1.61
53+24.00	Design	2.510	Trapezoid	1.898978	0.23089	0.005	0.0300	7.5	0.24	2.90	8.224589	0.362295	1.5:1	0.67	2.51	0.000	1.32
53+24.00	Design	2.510	Trapezoid	2.102784	0.19815	0.005	0.0300	10	0.20	2.45	10.6121	0.306051	1.5:1	0.67	2.51	0.000	1.19
53+24.00	Design	2.510	Trapezoid	2.445673	0.157975	0.005	0.0300	15	0.16	1.93	15.48141	0.240705	1.5:1	0.67	2.51	0.000	1.03

	Bankfull Flow Depths																
STA	IDENTIFIER	Q2 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	Х	side slope (H:V)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	6.300	Trapezoid	2.860229	0.496689	0.005	0.0300	4	0.59	7.03	5.758591	0.879296	1.5:1	0.67	6.30	0.000	2.20
53+24.00	Design	6.300	Trapezoid	3.381019	0.386469	0.005	0.0300	7.5	0.42	4.99	8.748492	0.624246	1.5:1	0.67	6.30	0.000	1.86
53+24.00	Design	6.300	Trapezoid	3.713169	0.335791	0.005	0.0300	10	0.35	4.23	11.05798	0.528992	1.5:1	0.67	6.30	0.000	1.70
53+24.00	Design	6.300	Trapezoid	4.28659	0.270718	0.005	0.0300	15	0.28	3.34	15.83413	0.417063	1.5:1	0.67	6.30	0.000	1.47

	50 Year Flood Flow																
STA	IDENTIFIER	Q50 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	х	side slope (H:V)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	10.900	Trapezoid	4.143721	0.64823	0.005	0.0300	4	0.80	9.57	6.392365	1.196182	1.5:1	0.67	10.90	0.000	2.63
53+24.00	Design	10.900	Trapezoid	4.797861	0.520287	0.005	0.0300	7.5	0.57	6.89	9.22156	0.86078	1.5:1	0.67	10.90	0.000	2.27
53+24.00	Design	10.900	Trapezoid	5.234176	0.456607	0.005	0.0300	10	0.49	5.85	11.4632	0.731602	1.5:1	0.67	10.90	0.000	2.08
53+24.00	Design	10.900	Trapezoid	6.004303	0.371639	0.005	0.0300	15	0.39	4.63	16.15629	0.578147	1.5:1	0.67	10.90	0.000	1.82

	100 Year Flood Flow																
STA	IDENTIFIER	Q100 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	х	side slope (H:V)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	11.700	Trapezoid	4.349413	0.67036	0.005	0.0300	4	0.83	9.95	6.48818	1.24409	1.5:1	0.67	11.70	0.000	2.69
53+24.00	Design	11.700	Trapezoid	5.021869	0.540326	0.005	0.0300	7.5	0.60	7.18	9.294149	0.897075	1.5:1	0.67	11.70	0.000	2.33
53+24.00	Design	11.700	Trapezoid	5.473272	0.474879	0.005	0.0300	10	0.51	6.10	11.52561	0.762804	1.5:1	0.67	11.70	0.000	2.14
53+24.00	Design	11.700	Trapezoid	6.272669	0.387057	0.005	0.0300	15	0.40	4.82	16.20605	0.603024	1.5:1	0.67	11.70	0.000	1.87

Worksheet 2-2. Computations of bankfull mean velocity and bankfull discharge using various methods.

	Bankt	ull VELC	DISCHAR	RGE Estimates							
Stream:	Elsner Creek			Location: Cordova, AK							
Date:	Stre	am Type:		Landscape Type:							
Observers:				HUC:							
	INPUT VARIAB	BLES			OUTP	UT VARIA	ABLES				
Bankfull Riff	e Cross-Sectional Area	3.3	A _{bkf} (ft ²)	Bankfull	Riffle Mea	an Depth	1.1	d _{bkf}			
Bankful	I Riffle Width	3	W _{bkf} (ft)	_	tted Perim 2 * d _{bkf}) + W		5.2	W p (ft)			
D ₈₄ Partic	le Size at Riffle	55	D ₈₄ (mm)		rticle Size 4 (mm) / 30		0.18045	D ₈₄ (ft)			
Banl	rfull Slope	0.005	S _{bkf} (ft/ft)	Нус	draulic Rac A _{bkf} / Wp	dius	0.63462	R (ft)			
Gravitation	nal Acceleration	32.2	g (ft / sec ²)		tive Rough (ft) / D ₈₄ (f		3.51692	R / D ₈₄ (ft/ft)			
Draii	nage Area	0.08	DA (mi ²)		near Veloc u* = (gRS) ³	. *	0.31965	u* (ft / sec)			
	ESTIMATION	N METHO	DS		Bankfull '	VELOCITY		kfull IARGE			
1. Friction Factor	Relative $\bar{u} =$	[2.83 + 5.6	66 * Log { R	/D ₈₄ }] u*	1.89	ft / sec	6.25	cfs			
2. Roughness (Fig	Coefficient: a) Manning's. 2-29, 2-30)	s <i>n</i> from Frict = 1.49*R ^{2/3} *S		1.73	ft / sec	5.71	cfs				
2. Roughness b) Manning's	Coefficient: n from Stream Type (F	ig. 2-31)	ū = 1.49*R ² n =	^{2/3} *S ^{1/2} /n		ft / sec		cfs			
Note: This equati	Coefficient: n from Jarrett (USGS): on is applicable to steep, step, le- and boulder-dominated st	pool, high bour				ft / sec		cfs			
Stream Types A1,	A2, A3, B1, B2, B3, C2 & E3										
		,	,,			ft / sec		cfs			
3. Other Metho	ds (Hey, Darcy-Weisba	ach, Chezy C	;, etc.)			ft / sec		cfs			
4. Continuity E Return Period fo		Gage Data Q =	$\bar{u} = Q/A$	year		ft / sec		cfs			
4. Continuity E	quations: b) Region	nal Curves	$\bar{u} = Q/A$			ft / sec		cfs			
	on Height Options for					* ***					
	sand-bed channels: Measustitute the D_{84} sand dune produced the same structure of the same structure.					istream side of	reature to the to	op or reature.			
Option 2. For the r	coulder-dominated channed ock on that side. Substitute	els: Measure 1 the D_{84} boulde	00 "protrusion er protrusion he	heights" of bo	bulders on the D_{84} term in me	sides from the ethod 1.	oed elevation to	the top of			
	nedrock-dominated channel hed elevation. Substitu						or uplifted surfa	ces above			
Option 4. For log of	og-influenced channels: No nupstream side if embedde	Measure " protr ed. Substitute	the D_{84} protrusion	s" proportionate ion height in ft f	to channel wid or the D_{84} term	dth of log diame in method 1.	eters or the heig	ght of the			

Worksheet 2-2. Computations of bankfull mean velocity and bankfull discharge using various methods.

Stream:	Elsner Creek			Location: Cordova, AK							
Date:	Stre	am Type:		Landscape Type:							
Observers:				HUC:							
	INPUT VARIAB	BLES			OUTP	UT VARIA	ABLES				
Bankfull Riffl	e Cross-Sectional Area	4.4	A _{bkf} (ft ²)	Bankfull	Riffle Mea	an Depth	1.1	d _{bkf}			
Bankful	I Riffle Width	4	W _{bkf} (ft)		tted Perim 2 * d _{bkf}) + W		6.2	W p (ft)			
D ₈₄ Partic	le Size at Riffle	55	D ₈₄ (mm)		rticle Size 4 (mm) / 30		0.18045	D ₈₄ (ft)			
Bank	rfull Slope	0.005	S _{bkf} (ft/ft)	Нус	draulic Rac A _{bkf} / Wp	dius	0.70968	R (ft)			
Gravitation	nal Acceleration	32.2	g (ft / sec ²)		tive Rough R (ft) / D ₈₄ (f		3.9329	R / D ₈₄ (ft/ft)			
Draii	nage Area	0.08	DA (mi ²)		near Veloc u* = (gRS) ⁾	. *	0.33802	u* (ft / sec)			
	ESTIMATION	N METHO	DS		Bankfull '	VELOCITY		kfull IARGE			
1. Friction Factor	Relative $\bar{u} =$	[2.83 + 5.6	66 * Log { R	/D ₈₄ }]u*	2.09	ft / sec	9.22	cfs			
2. Roughness (Fig	Coefficient: a) Manning's. 2-29, 2-30)		tion Factor/Rel $S^{1/2}/n$ $n =$		1.86	ft / sec	8.20	cfs			
2. Roughness b) Manning's	Coefficient: n from Stream Type (F	ïg. 2-31)	ū = 1.49*R² n =	^{2/3} *S ^{1/2} /n		ft / sec		cfs			
, ,	Coefficient: n from Jarrett (USGS): on is applicable to steep, step		$\bar{u} = 1.49 * R^2$ $n = 0.39 * S$ and any			ft / sec		cfs			
roughness, cobb	le- and boulder-dominated st A2, A3, B1, B2, B3, C2 & E3										
3. Other Metho	ds (Hey, Darcy-Weisba	ach, Chezy C	, etc.)			ft / sec		cfs			
3. Other Metho	ds (Hey, Darcy-Weisba	ach, Chezy C	, etc.)			ft / sec		cfs			
4. Continuity E Return Period fo		Gage Data Q =	Ū = Q/A	year		ft / sec		cfs			
4. Continuity E	quations: b) Region	nal Curves	$\bar{u} = Q/A$			ft / sec		cfs			
	on Height Options for					* ***					
	sand-bed channels: Measustitute the D_{84} sand dune properties.					stream side of	feature to the to	op of feature.			
Option 2. For the re	Option 2. For boulder-dominated channels: Measure 100 " protrusion heights " of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D_{84} boulder protrusion height in ft for the D_{84} term in method 1.										
	nedrock-dominated channel bed elevation. Substitu						or uplifted surfa	ces above			
Option 4. For log o	og-influenced channels: No n upstream side if embedde	Measure " protr ed. Substitute	the D_{84} protrusion	s" proportionate ion height in ft f	to channel wid for the D_{84} term	dth of log diame in method 1.	eters or the heig	ght of the			