CORDOVA FISH PASSAGE IMPROVEMENTS CAB 1 AND CAB 2

Hydrologic and Hydraulic Report
Cordova, Alaska

Prepared for:

U.S. Fish and Wildlife Service Region 7-Alaska

1011 E Tudor Road
Anchorage, Alaska 99503

Prepared by:

DOWL
5015 Business Park Boulevard, Suite 4000
Anchorage, Alaska 99503

October 2022

TABLE OF CONTENTS

1.0 INTRODUCTION 1
1.1 Objective 1
1.2 Existing Conditions 1
1.3 Design Criteria 3
1.4 Right-of-Way and Utilities 3
2.0 GEOTECHNICAL CONDITIONS 3
2.1 CAB 1 and CAB 2 4
2.1.1 North. 4
2.1.2 South 4
2.1.3 Soil Bearing Capacity 4
2.1.4 Construction Recommendations 4
2.2 Summary 4
3.0 GEOMORPHIC ANALYSIS 5
3.1 Stream Morphology and Crossing Characteristics 5
3.1.1 CAB 1 and $C A B 2$ 5
3.2 Substrate Analysis 6
3.2.1 CAB 1 and CAB 2 Upstream. 6
3.2.2 CAB 1 and CAB 2 Downstream 7
4.0 HYDROLOGIC ANALYSIS 8
4.1 Drainage Area Characteristics. 8
4.2 Methodology 8
4.3 Results of Flood Flow Analysis 9
4.3.1 CAB 1 and $C A B 2$ 9
5.0 HYDRAULIC ANALYSIS 9
5.1 Bankfull Velocity and Discharge Estimates 9
5.2 HY-8 Analysis 10
5.3 Low Flow Channel. 10
5.3.1 CAB 2 10
5.3.2 CAB 1 10
6.0 DESIGN ALTERNATIVES 11
7.0 RECOMMENDATIONS 12
7.1.1 CAB 2 12
7.1.2 CAB 1 12
7.2 Rejected Alternatives 13
7.2.1 CAB 2 13
7.2.2 CAB 1 13
8.0 REFERENCES 13
FIGURES
Figure 1: CAB 1 and CAB 2 Drainage Basin 2
Figure 2: Summary of CAB 1 and CAB 2 Upstream Pebble Count. 6
Figure 3: Summary of CAB 1 and CAB 2 Downstream Pebble Counts 7

TABLES

Table 1: Observed Stream Characteristics of Elsner River Tributary at CAB 1 and CAB 2.......... 5
Table 2: CAB 1 and CAB 2 Upstream Pebble Count Summary.. 7
Table 3: CAB 1 and CAB 2 Downstream Pebble Count Summary .. 8
Table 4: Estimated Peak Flows for CAB 1 and CAB 2.. 9
Table 5: Ratio of Culvert Width to Bankfull Width ... 12

APPENDICES

APPENDIX A: GEOMORPHIC ANALYSIS
APPENDIX B: SUBSTRATE DESIGN
APPENDIX C: HYDROLOGIC ANALYSIS
APPENDIX D: HYDRAULIC ANALYSIS

ACRONYMS

ADF\&G ...Alaska Department of Fish and Game
AWC Anadromous Waters Catalog
cfs cubic feet per second
CRWP..Copper River Watershed Project

FPID ..Fish Passage Inventory Database
fps. feet per second
HW/D ... headwater-to-depth ratio
mm . .millimeters
NOAA
OHW. National Oceanic and Atmospheric Administration
ROW .ordinary high water USDA ... United States Department of Agriculture USFWS..United States Fish and Wildlife Service
USFS
USGS United States Geological Survey

1.0 INTRODUCTION

1.1 Objective

The objective of this project is to remove two existing culverts in the Copper River Delta near Cordova, Alaska, replacing one of them with a new culvert that will improve fish passage and providing channel and stream bank restoration where the second culvert is removed. The replacement culvert and stream bank restoration will enhance flood and fish passage and ecologic function at the road crossings of Elsner River Tributary by simulating the natural creek channel and provide conveyance of at least the 100-year flood flow. The culvert will also enhance maintenance conditions at the remaining crossing and reduce the likelihood of future infrastructure damage caused by flooding along the road. The Elsner River Tributary is an anadromous stream originating northeast of Cabin Lake Road and flowing southwest to Elsner River and the Little Glacier Slough. The Elsner Creek Tributary is fed by subsurface flows and does not respond significantly to precipitation. The project crossing drainage basin is shown in Figure 1.

The Elsner River Tributary is identified in the Alaska Department of Fish and Game's (ADF\&G) Anadromous Waters Catalog (AWC) as number 212-10-10030-2150-3016. The stream crossings have been identified as No. 20101904 (CAB 1) and No. 20101905 (CAB 2) in the ADF\&G's Fish Passage Inventory Database (FPID). CAB 2 has been given a Red rating and CAB 1 has been given a Green rating. The Elsner River Tributary provides rearing habitat for Coho salmon.

To meet project objectives, a topographic survey of the project area was completed to facilitate hydraulic modeling. A geomorphic analysis was used to assess sediment transport and to incorporate natural channel characteristics into the design. A geotechnical analysis, completed in April 2019 by others, was used to investigate subsurface soil conditions at the four crossings. Design alternatives were evaluated to determine the most economical means of replacing the existing structures to improve ecological function and flood conveyance.

1.2 Existing Conditions

CAB 2 is located on Cabin Lake Road, downstream of CAB 1. The existing culvert at CAB 2 is 3 feet in diameter and 35 feet long. The culvert has a gradient of 1.1% and a constriction ratio of 0.34 . Corrosion has been observed on the existing culvert with a rust line height of 2.8 feet. Additionally, the culvert is backwatered and the culvert inlet is squashed with the bottom of culvert bent up preventing low flows to enter the pipe. There is minimal cover over the pipe. CAB 2 was given an overall fish passage rating of Red in 2011 by ADF\&G. Remnants of an old timber weir are located just upstream of CAB 2.

CAB 1 in located on an old, abandoned spur road of Cabin Lake Road, upstream of CAB 2 and the old weir. The existing culvert at CAB 1 is 3 feet in diameter and 21 feet long. The culvert has a gradient of 2% and a constriction ratio of 0.22 . Corrosion has been observed on the existing culvert with a rust line height of 1.65 feet. The crossing was observed to have inadequate road fill volume above the culvert. Despite these negative characteristics, CAB 1 was given an overall fish passage rating of Green in 2011 by ADF\&G due to the backwater characteristics.

Figure 1: CAB 1 and CAB 2 Drainage Basin

1.3 Design Criteria

The geomorphic analog method is the preferred design approach for the CAB 1 and CAB 2 crossings of Elsner River Tributary. The design of the proposed fish passage culverts is based on criteria and guidelines contained in the USFWS Fish Passage Design Guidelines (Revision 6) released June 2021, which follows the United States Forest Service (USFS) stream simulation approach with modifications. The USFS stream simulation approach is described in the 2008 Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings. Key criteria from the sources include:

- The constructed channel within the crossing shall not differ from the reference reach condition under normal flow conditions regarding channel width, cross-sectional area, gradient, substrate, and ability to pass floating debris;
- The culvert width shall be at least 1.0 times bankfull width, with a minimum diameter of 5 feet;
- The embedment depth shall be the greater of 40 percent of the diameter or two feet for circular culverts;
- Embedment depth shall be the greater of 20 percent of the rise or two feet for all other culverts;
- Substrate material within the crossing shall be dynamically stable up to and including the 50-year flood;
- Stream banks inside the culvert shall be stable up to and including the 100-year flood;
- A continuous low flow channel that simulates the reference reach shall be incorporated in the substrate material;
- Culvert gradient shall be within 25% of the natural channel grade;
- Culverts shall be corrugated; and
- Structures shall be designed to accommodate at least the 100-year flood flow, preferably with a headwater-to-depth (HW/D) ratio of 0.8 or less.

1.4 Right-of-Way and Utilities

Cabin Lake Road is owned by the USFS.
No known utilities are located along Cabin Lake Road at the CAB 1 and CAB 2 crossings.

2.0 GEOTECHNICAL CONDITIONS

A geotechnical investigation consisting of two borings at each crossing was conducted at the two fish passage crossing locations in April 2019 by Northern Geotechnical Engineering, Inc. The subsurface conditions encountered, soil bearing capacity, and site-specific geotechnical construction recommendations are summarized below.

2.1 CAB 1 and CAB 2

2.1.1 North

- 0 to 7 feet: Well graded gravel with silt and sand. Groundwater encountered at approximately 4.5 feet.
- 7 to 15 feet: Well graded sand with silt and gravel.
- 15 to 18 feet: Sandy silt.
- 18 to 21.5 feet: Silty sand

2.1.2 South

- 0 to 3 feet: Poorly graded gravel with silt and sand.
- 3 to 4.5 feet: Silt with sand. Groundwater encountered at approximately 4.5 feet.
- 4.5 to 6 feet: Silty sand with gravel.
- 6 to 7 feet: Wood.
- 7 to 15 feet: Well graded gravel with sand.
- 15 to 18 feet: Sandy silt.
- 18 to 21.5 feet: Silty sand.

2.1.3 Soil Bearing Capacity

The allowable soil bearing capacity of 3,900 pounds per square foot may be used for a box culvert foundation on undisturbed sand and gravel or compacted structural fill.

2.1.4 Construction Recommendations

Site bearing soils approximately 10 to 11 feet below the road surface consist of loose well graded sand and gravel. Excavation is required a minimum of 2 feet below the bottom of the culvert. Organic material observed must be completely removed and inspected to ensure all organic materials have been removed. The very loose/soft soils should be removed during excavation of the unsuitable organic material. Then placement of geotextile, reinforcement, type 2 and Subbase, Grading F material is required, as described in the next section.

2.2 Summary

Additional recommendations provided in the geotechnical report include using culvert embedment material Subbase, Grading F, extended one foot below the bottom of the culvert, 18 inches to both sides of the culvert, and a minimum of one foot above the culvert. A layer of geotextile, reinforcement, type 2 should be placed between the Subbase, Grading F material
and the native soil or Type A material. A layer of geotextile, reinforcement, type 2 should be placed between each one-foot layer of Subbase, Grading F material.

3.0 GEOMORPHIC ANALYSIS

A site investigation was conducted on July 20 through 23, 2021. During the site visit, DOWL engineers took channel measurements, conducted pebble counts, and observed bedform features. The reconnaissance-level map, field notes, and pebble count data from the site investigation are included in Appendix A.

3.1 Stream Morphology and Crossing Characteristics

3.1.1 $C A B 1$ and $C A B 2$

Elsner River Tributary is a spring fed tributary that originates northeast of Cabin Lake Road and flows southwest into Elsner River.

CAB 1 is located upstream of CAB 2. Upstream of the CAB 1 Old Timber Road crossing, the Elsner River Tributary is heavily vegetated, with significant woody debris. The stream is meandering with several channels of split flow and ponded areas. Gravel is present inside the pipe and near the outlet of the pipe. The Old Timber Road embankment over the pipe is split open, indicating overtopping. The predominant bedform features consist of slow pools with occasional riffles, woody debris steps, and ponded areas. Upstream is low gradient and the banks are low and vegetation and woody debris provide bank stabilization. The stream substrate consists of a various range of gravel sizes and organics. Riparian vegetation includes grasses, moss, fern, alder, willow, hemlock, and spruce trees. The floodplain is wide.

There is a gravel bar just downstream of the CAB 1 culvert. A ponded area with woody debris is located downstream of CAB 1 and upstream of CAB 2 with remnants of an old timber weir approximately 30 feet upstream of CAB 2. Downstream of the CAB 2 Cabin Lake Road crossing, the Elsner River Tributary is meandering with slow pools and woody debris steps. Downstream is low gradient and the banks are low and vegetation and woody debris provide bank stabilization. It appears that the relic channel is beginning to narrow and become more confined. Stream substrate consists of a various range of gravel sizes with some small cobbles, sand and organics. Riparian vegetation includes grasses, moss, fern, alder, willow, hemlock, and spruce trees. The floodplain is wide.

A reference reach was not defined at this crossing, but two cross sections were measured upstream and downstream of the crossings, outside of the surveyed area. Observed bankfull width at the crossing upstream was 4 feet with a bankfull depth of 16 inches. The observed bankfull width at the crossing downstream was 3 feet with a bankfull depth of 11 inches. The channel slope is approximately 0.6 percent.

The observed stream characteristics of Elsner River Tributary at the measured cross sections at CAB 1 and CAB 2 are summarized in Table 1.

Table 1: Observed Stream Characteristics of Elsner River Tributary at CAB 1 and CAB 2

Stream Parameter	Existing Conditions
Surveyed WSE Slope	0.6 percent

Measured Bankfull Width	3 to 4 feet
Measured Bankfull Depth	$1.1+/$ - feet
Bedform Features	Step-Pools, Riffles, Fines

The Cabin Lake Road roadway embankment at CAB 2 is well vegetated with recent grading of the gravel road. There is between 0.5 and 1.3 feet of roadway cover over the existing culvert. No end sections or headwalls are present at the CAB 1 and CAB 2 culverts.

3.2 Substrate Analysis

Pebble counts were completed on July 21 and 22, 2021. The D_{84} particle represents that size of which 84 percent of the streambed particles are expected to be smaller in size and is typically used as the basis for sizing rock that is only transported downstream during large flood events. Visual observations in the vicinity of the crossings agree with the pebble count results.

3.2.1 $C A B 1$ and $C A B 2$ Upstream

One pebble count was conducted approximately 140 feet upstream of CAB 2 and just downstream of CAB 1. The D_{84} particle size was 55.0 millimeters (mm). The armor layer upstream of CAB 2 and downstream of CAB 1 was found to range from fine gravel to small cobble, with most of the stream substrate consisting of course and very coarse gravel. A summary of the pebble counts is shown in Figure 2 and Table 2.

Pebble Count 1: CAB 1 Upstream and CAB 2 Downstream

Figure 2: Summary of CAB 1 and CAB 2 Upstream Pebble Count

For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed stream section. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Table 2: CAB 1 and CAB 2 Upstream Pebble Count Summary

Particle Size	Count 1
	140 feet Upstream CAB 2
$D_{100}(\mathrm{~mm})$	90
$D_{84}(\mathrm{~mm})$	55.0
$D_{50}(\mathrm{~mm})$	33.8

3.2.2 CAB 1 and CAB 2 Downstream

Two pebble counts were conducted downstream of CAB 1 and CAB 2; pebble count 1 was taken in a riffle and pebble count 2 was taken at the outlet of CAB 2. The average D_{84} particle size downstream of CAB 1 and CAB 2 was 80 millimeters (mm). The armor layer downstream of CAB 1 and CAB 2 was found to range from medium gravel to small cobble, with most of the stream substrate consisting of medium to very coarse cobble. A summary of the pebble counts is shown in Figure 3 and Table 3.

Figure 3: Summary of CAB 1 and CAB 2 Downstream Pebble Counts

For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed culvert. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Table 3: CAB 1 and CAB 2 Downstream Pebble Count Summary

Particle Size	Count 1	Count 2
	Downstream	Downstream
$D_{100}(\mathrm{~mm})$	256	90
$D_{84}(\mathrm{~mm})$	90	46.5
$D_{50}(\mathrm{~mm})$	63	22.4

4.0 HYDROLOGIC ANALYSIS

4.1 Drainage Area Characteristics

The Elsner River Tributary CAB 1 and CAB 2 drainage basin flowing to Cabin Lake Road is approximately 48 acres (0.08 square miles) in size. The drainage basin is an undeveloped, forested area.

4.2 Methodology

Four methods of quantifying flow were compared to identify the most appropriate design discharge likely experienced by the crossings. Cordova's interconnected floodplain hydrology is not thought to be accurately captured by the USGS regional regression equations. The flow estimates derived from the regression equations were supplemented by flow estimates derived from stage-discharge measurements at CAB 2 completed by the USFWS.

The 2003 and the 2016 Regional Regression Equations were used to estimate peak discharges for the Elsner River Tributary crossings. The 2016 Regional Regression Equations, published by the United States Geological Survey (USGS) in the Scientific Investigations Report 2016-5024, were used to estimate peak discharges for both crossings. The USGS PRISM data for the drainage areas was used to find a mean annual precipitation value of 104.46 inches for CAB 1 and CAB 2. The drainage basin for CAB 1 and CAB 2 is smaller than the 0.4 square mile lower limit area so WinTR-55 was used in addition to the Regional Regression Equations.

The stage was measured at CAB 2 for two and three years, respectively. Flow measurements were taken in the field by CRWP and USFWS to generate stage-discharge relationships for the gauges and were correlated to the USGS Glacier Tributary gauge. A log-Pearson Type III analysis was conducted to estimate the flood frequency.

4.3 Results of Flood Flow Analysis

4.3.1 $C A B 1$ and $C A B 2$

The peak runoff flows for each analysis method for CAB 1 and CAB 2 are shown in Table 4.
Table 4: Estimated Peak Flows for CAB 1 and CAB 2

Storm Event (year)	2016 Regression (cfs)	2003 Regional (cfss)	WinTR-55 (cfs)	LPIII Flood Frequency Estimate (cfs)
2	12.6	23.4	16.3	$\mathbf{6 . 3}$
5	22.3	31.6	23.8	$\mathbf{8 . 0}$
10	30.0	37.1	30.0	$\mathbf{9 . 0}$
25	41.0	44.0	38.9	$\mathbf{1 0 . 1}$
50	49.8	49.1	46.2	$\mathbf{1 0 . 9}$
100	59.7	54.1	53.9	$\mathbf{1 1 . 7}$

Notes: cfs = cubic feet per second
The flow estimates derived from measured stage at the site are significantly lower than the USGS regression equations and Win TR-55 flow estimates. The flow estimates based on measured stage appear to match observations made during the July 2021 site visits and the groundwater fed nature of this system. Given the period of record, the observations at site, and size of the contributing basin, it appears that log-Pearson Type III estimates are appropriate to size the rehabilitated channel section.

Per the criteria identified in the project objectives, culverts for CAB 2 and stream widths for CAB 1 have been evaluated for hydraulic capacity based on the 100-year peak flow of 11.7 cubic feet per second (cfs).

5.0 HYDRAULIC ANALYSIS

5.1 Bankfull Velocity and Discharge Estimates

The bankfull discharge and velocity was calculated for the measured cross section based on the cross section hydraulic dimensions, bankfull slope, and Manning's Equation using the River Stability Field Guide worksheets to check that average bankfull velocity is between 2.5 to 5 feet per second (fps) and that the bankfull discharge is close to the 2 -year flood flow. Calculated bankfull velocity and discharge from the worksheet is shown below and based on guidance from the USFWS Fish Passage Design Guidelines (Revision 6). River Stability Field Guide worksheets are included in Appendix D.

A 3-foot bankfull riffle width resulted in the calculated 6.25 cfs and 5.71 cfs bankfull discharge for the crossings which is less than the 2-year storm event for the estimated peak flows.

ESTIMATION METHODS				Bankfull VELOCITY		Bankfull DISCHARGE	
1. Friction / Relative Factor Roughness	$\bar{u}=\left[2.83+5.66{ }^{\star} \log \left\{R / D_{84}\right\}\right] u^{\star}$			2.09	$\mathrm{ft} / \mathrm{sec}$	9.22	cfs
2. Roughness Coefficient: a) Manning's n from Friction Factor/Relative				1.86	$\mathrm{ft} / \mathrm{sec}$	8.20	cfs
Roughness (Figs. 2-29, 2-30)	$\bar{u}=1.49{ }^{\circ} R^{2 / 3} \cdot S^{1 / 2} / n$		0.045				

A 4-foot bankfull riffle width resulted in the calculated 9.22 cfs and 8.20 cfs bankfull discharge for the crossings which is between the 5-and 10-year storm event for the estimated peak flows.

The 4-foot bankfull width was used for the design to be conservative, due to the limited duration of stage measurements and the higher peak flows calculated using the Regression and WinTR55 peak runoff flow methods.

5.2 HY-8 Analysis

The Federal Highway Administration's HY-8 software was used for the hydraulic analysis of proposed culverts. The software was used to model the hydraulic capacity at the 50-year and 100-year flow and calculate the overtopping flow. Results of the HY-8 analyses for the proposed culvert options are included in Section 7.0 Recommendations. Supporting calculations are included in Appendix D. Structures were selected for analysis based on span dictated by the measured bankfull widths and HW/D ratios.

5.3 Low Flow Channel

5.3.1 CAB 2

The low-flow channel for the CAB 2 crossing was calculated based on guidance from the USFWS Fish Passage Design Guidelines (Revision 6). A "V" shaped thalweg with a crosssectional area of 15 to 30 percent of the bankfull cross-sectional area and a minimum depth of four inches for small streams and up to twelve inches for larger streams was used for design of the low-flow channels.

5.3.2 CAB 1

The USDA Forest Service Low Water Crossings: Geomorphic, Biological, and Engineering Design Considerations (2008) was used as guidance to determine site hydraulic factors needed for design of the low-water crossing at CAB 1. Manning's equation was used to determine flow depth and velocity through the respective components of the channel section. Supporting
calculations are included in Appendix D. The geometry of the crossing was selected for analysis based existing measured bankfull widths and the ability to pass a 60 mm design fish during $\mathrm{Q}_{2} \mathrm{D}_{2}$ flows.

6.0 DESIGN ALTERNATIVES

Design guidelines recommend that culvert span for proposed replacement structures should be at least 1.0 times bankfull width and up to 1.4 times bankfull width. One of the main design parameters in the analysis of design options is the HW/D: a numerical representation of the depth of the water (headwater depth) at the culvert inlet to the height (depth) of the culvert relative to the stream bed. For stream simulation design, a HW/D of 0.8 or less is desirable when economically reasonable to reduce the likelihood for scour of bed material within the culvert during flood events and to provide freeboard for passing debris during flood events. A combination of measured bankfull information and HW/D ratios was used to determine acceptable structures for the crossings.

Several replacement alternatives have been evaluated including various aluminum box culvert, pipe arch culvert and round culvert sizes at CAB 2. Applicable culvert shapes for each crossing were determined with consideration given to groundwater elevations and available cover over the pipe.

Aluminum and steel structural plate pipe arch and round culvert options were considered, as well as aluminum and aluminized steel corrugated pipe arch and round culverts.

Culvert replacement options considered for CAB 2 include:

- 73-inch span by 55-inch rise aluminized corrugated steel pipe arch embedded 2 feet ($\mathrm{Q}_{100} \mathrm{HW} / \mathrm{D}=0.41$),
- 81-inch span by 59-inch rise aluminized corrugated steel pipe arch embedded 2 feet ($Q_{100} H W / D=0.35$),
- 6-foot aluminized corrugated steel round pipe embedded 2.9 feet ($Q_{100} H W / D=0.34$),
- 7-foot aluminized corrugated steel round pipe embedded 3.9 feet $\left(Q_{100} H W / D=0.33\right)$,
- A 9-foot, 7-inch span by 4-foot, 1-inch rise aluminum box culvert embedded 2 feet (Q_{100} $\mathrm{HW} / \mathrm{D}=0.62$),
- A 10-foot, 0-inch span by 4-foot, 10-inch rise aluminum box culvert embedded 2 feet ($\mathrm{Q}_{100} \mathrm{HW} / \mathrm{D}=0.45$),
- A 10-foot, 7-inch span by 3-foot,5-inch rise aluminum box culvert embedded 2 feet $\left(\mathrm{Q}_{100}\right.$ HW/D=0.95),
- A 11-foot, 11-inch span by 3-foot, 7-inch rise aluminum box culvert embedded 2 feet ($Q_{100} H W / D=0.78$),
- A 13-foot, 7-inch span by 4-foot, 7-inch rise aluminum box culvert embedded 2 feet (Q_{100} HW/D=0.47), and

Channel and streambank replacement options considered for CAB 1 include:

- A 4-foot wide, $1 \mathrm{~V}: 1.5 \mathrm{H}$ slope trapezoidal channel section, with $\mathrm{Q}_{2} \mathrm{D}_{2}$ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. ($\mathrm{Q}_{2} \mathrm{D}_{2}$ flow depth=4.15 inches),
- A 7.5-foot wide, $1 \mathrm{~V}: 5 \mathrm{H}$ slope trapezoidal channel section, with $\mathrm{Q}_{2} \mathrm{D}_{2}$ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. ($\mathrm{Q}_{2} \mathrm{D}_{2}$ flow depth=2.90 inches),
- A 10-foot wide, $1 \mathrm{~V}: 5 \mathrm{H}$ slope trapezoidal channel section, with $\mathrm{Q}_{2} \mathrm{D}_{2}$ flows depth to meet 60 mm (2.36 inches) design fish minimum depth. ($\mathrm{Q}_{2} \mathrm{D}_{2}$ flow depth=2.45 inches), and

7.0 RECOMMENDATIONS

7.1.1 CAB 2

Replacing the 3 -foot diameter round culvert at the CAB 2 crossing with a 6 -foot round aluminized steel culvert is the recommended option for improving fish passage and flood conveyance at the Elsner River Tributary crossing.

This replacement option is anticipated to convey the Q_{100} of 11.7 cfs and the Q_{50} of 10.9 cfs with a HW/D ratio of approximately 0.34 and 0.32 , respectively. The round culvert will be embedded 2.9 feet. Minimum allowable cover over the culvert is approximately 2 feet. Roadway overtopping would occur at a flow of approximately 67.51 cfs.

The recommended culvert meets the criteria to accommodate the 100-year flood flow with a HW/D ratio less than 0.8 . No overtopping of the existing culvert has been noted during storm events, inferring that flow rerouting or storage of runoff upstream of CAB 2 occurs. The round culvert will provide an adequate span to facilitate construction of an approximately 4 -foot-wide channel. The culvert will be embedded with waterway bed material to mimic natural substrate. The waterway bed fill material, which is a mix of selected material, type A and class I riprap will be shaped to retain a 4 -foot bankfull width inside the culvert. Reconstructed stream banks upstream and downstream from the culvert will consist of vegetated mats and woody debris where necessary. The embankment slopes will be stabilized with Class I riprap to provide erosion protection.

Aluminized steel pipe was selected due to the higher corrosion resistance and longevity, ease of construction, low cost, and availability.

Table 5: Ratio of Culvert Width to Bankfull Width

Culvert Width	6 feet
Bankfull Width	4 feet
Ratio	1.5

7.1.2 CAB 1

Replacing the 3 -foot diameter round culvert at the CAB 1 crossing with a 4 -foot wide channel section with 4 -foot woody debris banks topped with vegetative mat is the recommended option for improving fish passage and flood conveyance at the Elsner River Tributary crossing.

This replacement option is anticipated to convey the Q_{100} of 11.7 cfs and the Q_{50} of 10.9 cfs with a flow depth of approximately 0.83 feet and 0.80 feet, respectively.

7.2 Rejected Alternatives

7.2.1 $C A B 2$

The 73 -inch span by 55 -inch rise pipe arch and the 81 -inch span by 59 -inch rise pipe arch were considered for the crossing but eliminated due to rise, constructability for placing embedment material and availability. The 7 -foot round pipe embedded 3.9 feet was considered but eliminated due to the additional depth of excavation and embedment for minimal additional hydraulic capacity. The 9 -foot, 7 -inch span by 4 -foot, 1 -inch rise aluminum box culvert, the 10foot, 7 -inch span by 3 -foot, 5 -inch rise aluminum box culvert, the 11 -foot, 11 -inch span by 3 -foot, 7 -inch rise aluminum box culvert, and the 13 -foot, 7 -inch span by 4 -foot, 7 -inch rise aluminum box culvert were considered for the crossing but eliminated due to over widening of the crossing.

Aluminum and steel structural plate pipe arch and round culvert options were considered but rejected due to higher cost and installation time. Aluminum corrugated pipe arch and round culverts were eliminated due to limited available cover over the pipe.

7.2.2 CAB 1

The 7.5 -foot width channel section was considered for the crossing but eliminated due to bankfull width. The 15 -foot-wide channel section was considered for the crossing but eliminated due to bankfull width and the $\mathrm{Q}_{2} \mathrm{D}_{2}$ flow depth being too shallow for the design fish.

8.0 REFERENCES

[^0]CA: U.S. Department of Agriculture (USDA), Forest Service, National Technology and Development Program.

Jones, Stanley H. \& Fahl, Charles B. (1994). "Magnitude and Frequency of Floods in Alaska and Conterminous Basins of Canada." U.S. Geological Survey WaterResources Investigations Report 93-4179. Anchorage, Alaska.

Northern Geotechnical Engineering Inc. d.b.a Terra Firma Testing., 2019. Geotechnical Report for USFWS Fish Passage Improvements, Copper River Highway Cordova, Alaska , Anchorage, AK.

Rosgen, D.L. (1996). Applied River Morphology, Second Edition, Wildland Hydrology, Pagosa Springs, Colorado.

Rosgen, D.L. (2007). In Part 654 Stream Restoration Design National Engineering Handbook (210-VI-NEH), J. Bernard, J.F. Fripp \& K.R. Robinson (Eds.). USDA Natural Resources Conservation Service, Washington, D.C. Retrieved from: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/manage/restoration/?cid =stelprdb1044707

Rosgen, D.L. (2008). River Stability Field Guide and River Stability Forms \& Worksheets. Retrieved from: https://wildlandhydrology.com/books/?id=21\&course=River+Stability+Field+Guide+and+ River+Stability+Forms+\%26amp\%3B+Worksheets
U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), 2007. National Engineering Handbook, Part 654 Stream Restoration Design, Chapter 11: Rosgen Geomorphic Channel Design, Washington D.C.
U.S. Department of Agriculture (USDA), Forest Service, 2022. Personal Communication: Cordova Gauge Data, Franklin Dekker: Anchorage, AK

APPENDIX A: GEOMORPHIC ANALYSIS

Vegetation:
nemlock, spence, devels clob, moss, alder, willow
Bedrock Observed:

DOWNSTREAM REFERENCE REACH:

Vegetation:

Bedrock Observed:

Substrate/Bed Mobility: CAB 1: qravel/cobble @outlet; no tine sediments, low mojolity/no ied transport
Floodplain Characteristics/Entrenchment:

Flow/Velocity Estimates:
slow pond CS , ClC CWFed
Tie-in Points:
grave Bar @outlet CAB 1 $\rightarrow 129-151.5$

WSE WII drop $\backslash / / s \rightarrow$ show Before/affer WSE (gW?) upwelling?
CAB 1 has overthow path

Date:							Project Number:		
UPSTREAM REFERENCE REACH:									
Channel Cross Section Shape:					Channel Slope:				
Δ from Xing	Bankfull Width	Bankfull Depth		Floodplain Width	Riffles		Channel Stability Notes:		
					Δ Xing	Length			
		-						$C A B 1$	
		.					$\begin{array}{ll}\text { Stability: } & 1=\text { lowest (very temporary) } \\ & 5=\text { highest (permanent) }\end{array}$		
Pools			Steps				Ribs		Notes:
Δ Xing	Length	Depth	Δ Xing	Height	Type	Stability	Δ Xing	Stability	
			,					-	

Bedrock Observed:

DOWNSTREAM REFERENCE REACH:

Channel Cross Section Shape:
Channel Slope:

Δ from Xing	Bankfull Width	Bankfull Depth	Bed Width	Floodplain Width	Riffles		Channel Stability Notes:		
					Δ Xing	Length			
							.		
							$\begin{array}{ll}\text { Stability: } & 1 \text { = lowest (very temporary) } \\ & 5=\text { highest (permanent) }\end{array}$		
Pools			Steps				Ribs		Notes:
Δ Xing	Length	Depth	\triangle Xing	Height	Type	Stability	\triangle Xing	Stability	
-									
								,	.

[^1]Der. Revised RDP 08212015

Date:
UPSTREAM REFERENCE REACH:

Project Number:
UPSTREAM REFERENCE REACH:
Channel Cross Section Shape:

Vegetation:

Bedrock Observed:

DOWNSTREAM REFERENCE REACH:

Vegetation:

Bedrock Observed:

Shev1 DS $7 / 21 / 21$

- lots of firy obscived
- willon la dew) grasses/fems
- 'l'cover@outll
- pipe submevaced
- gravelbar@outut
- 2 madouts
- Pond mevges@n260
-publecoont@ritlu 35'ds
can inureuse grat canp Road elev. rase Road
sonvy: grat camp Roal Arom crown of copper fire highnay to 200'-300' (old lange colvert)
as: n 300' to where sreams connect Bigdrop@n290'

2: Rittulpod à marsh
4: constinel by Road and benen U
le'no Rut. Racn

Cop9 $7 / 2 / 21 \quad$ US

- 4l existing uulvert
- Rustmanknalfbamel
-Wst 4 1/4 Barrel
- laval boulder inside
- 4i-5icover@ lnve
-Pebbucount@102'Riftle
Surney: us u 300 'to shery te in.
Ogo up new cmannel for Remainitha
2:Riftel poots a matsh 2:
 4: wde FP : b: ho Ret Reach use Shen Ref. Ruch q9 do syn. - vidth or Q/A method - all mash us. no culvert on goul cav'p - Road US

F: arcasses, Reeds, willon//Ader

 \cdots - - .

$7121 / 21$
cal (arm mike-qustavus, wants update Cost est. for grand pa's farm Road Givants est. to update estimate, potentially need to update plans Forester cop \rightarrow add removal of smithies and obstruction

APPENDIX B: SUBSTRATE DESIGN

New Stream Channel Design (Culvert, Rock Ramp) - CAB 1

Using Corps of Engineers Equations - FHWA Circular on Development in the River System - Page 6.25. FHWA NHI 01-004; River Engineering for Highway Encroachments, 2001 http://www.fhwa.dot.gov/engineering/hydraulics/library arc.cfm?pub number=8\&id=20				Approximate depth-average flow for outlet velocities
YELLOW ARE INPUTS				
Safety Factor Stability Coefficient for Incipient Failure Vertical Velocity Distribution Coeff	1.5			
	0.3	(0.36 round rock, 0.3 angular rock)		
	1.00	(1.0 for straight channels)		
Blanket Thickness Coeff	1	($1 \times \mathrm{xD} 100$ or 1.5 or D50 max, whichever is greater) ft for 100 year event		
Local depth of flow	1.15			
Unit Weight of water	62.4	$\mathrm{lb} / \mathrm{ft}^{\wedge} 3$ assumed		
Unit weight of rock	165	$\mathrm{lb} / \mathrm{ft}^{\wedge} 3 \quad$ assumed		
Local depth-average velocity	1.2	ft / s from 100-year event avg. velocity in pipe		
Side Slope correction factor	1			
Gravitational Acceleration	32.2	$\mathrm{ft} / \mathrm{s}^{\wedge} 2$		
D85/D15	5	(1.7-5.2)		
D50/D30	2			
Note: This method is based on the minimum D30 size				
Riprap Design Method - Selecting Proper Gradation, Page 131.Design Hydrology and Sedimentology for Small Catchments, Haan, Barfield and Hayes, 1981.				
D15	0.0	ft	inches	
D30	0.0	ft 1.0	inches	
D50	0.0	ft	inches	
D85	0.0	ft	inches	
D100	0.0	ft	inches	
Using D50 size, used FHWA circular for Rip Rap design to spec out D100, D85 and D15. D100 = 2.0D50				

Gradation values should be within $+/-5 \%$ of this gradation (Rice)
AND we need to have at least 5% sand size (\#10) or smaller (Forest Service) in the combined gradation

DATA for Graph \& Fuller-Thomson Eqn		
Size (in)	Combined $\%$ pa F-T equation	
54.000	100%	212%
48.000	100%	200%
34.000	100%	168%
30.000	100%	158%
24.000	100%	141%
20.000	100%	129%
16.000	100%	115%
12.000	100%	100%
10.000	95%	91%
8.000	75%	82%
5.000	60%	65%
3.000	55%	50%
1.000	33%	29%
0.750	25%	25%
0.187	13%	12%
0.079	8%	8%

New Stream Channel Design (Culvert, Rock Ramp) - CAB 2

Using Corps of Engineers Equations - FHWA Circular on Development in the River System - Page 6.25. FHWA NHI 01-004; River Engineering for Highway Encroachments, 2001 http://www.fhwa.dot.gov/engineering/hydraulics/library arc.cfm?pub number=8\&id=20				Approximate depth-average flow for outlet velocities
YELLOW ARE INPUTS				
Safety Factor Stability Coefficient for Incipient Failure Vertical Velocity Distribution Coeff	1.5			
	0.3	(0.36 round rock, 0.3 angular rock)		
	1.00	(1.0 for straight channels)		
Vertical Velocity Distribution Coeff Blanket Thickness Coeff	1	(1xD100 or 1.5 or D50 max, whichever is greater)		
Local depth of flow	0.5	ft for 100 year event		
Unit Weight of water	62.4	$\mathrm{lb} / \mathrm{ft}^{\wedge} 3$ assumed		
Unit weight of rock	165	$\mathrm{lb} / \mathrm{ft}^{\wedge} 3$ assumed		
Local depth-average velocity	2	ft / s from 100-year event avg. velocity in pipe		
Side Slope correction factor	1			
Gravitational Acceleration	32.2	$\mathrm{ft} / \mathrm{s}^{\wedge} 2$		
D85/D15	5	(1.7-5.2)		
D50/D30	2			
Note: This method is based on the minimum D30 size				
Riprap Design Method - Selecting Proper Gradation, Page 131.Design Hydrology and Sedimentology for Small Catchments, Haan, Barfield and Hayes, 1981.				
D15	0.0	ft	inches	
D30	0.0	ft 1.0	inches	
D50	0.0	ft	inches	
D85	0.1	ft	inches	
D100	0.1	ft	inches	
Using D50 size, used FHWA circular for Rip D100 = 2.0D50		spec out D100, D85 and D15.		

Gradation values should be within $+/-5 \%$ of this gradation (Rice)
AND we need to have at least 5% sand size (\#10) or smaller (Forest Service) in the combined gradation

DATA for Graph \& Fuller-Thomson Eqn		
Size (in)	Combined $\%$ pa F-T equation	
54.000	100%	212%
48.000	100%	200%
34.000	100%	168%
30.000	100%	158%
24.000	100%	141%
20.000	100%	129%
16.000	100%	115%
12.000	100%	100%
10.000	95%	91%
8.000	75%	82%
5.000	60%	65%
3.000	55%	50%
1.000	33%	29%
0.750	25%	25%
0.187	13%	12%
0.079	8%	8%

APPENDIX C: HYDROLOGIC ANALYSIS

Cordova Hydrology - CAB 1 \& 2							
Percent chance exceedance	Recurrence interval	2016 Regression (cfs)	2003 Regression (cfs)	Win TR-55 (cfs)	CAB3 Gage Record	Peak Q Coorelated to USGS Gage 15 min	Peak Q from coorelation to daily rainfall 10 day sum
	Q2D2	5.04	9.37	6.53	1.88	2.51	1.09
50	2	12.6	23.4	16.3	4.7	6.3	2.7
20	5	22.3	31.6	23.8	5.8	8.0	3.5
10	10	30.0	37.1	30.0	6.5	9.0	4.0
4	25	41.0	44.0	38.9	7.4	10.1	4.6
2	50	49.8	49.1	46.2	8.0	10.9	5.0
1	100	59.7	54.1	53.9	8.7	11.7	5.4
0.5	200	69.8	59.3		9.4	12.4	5.8
0.2	500	84.4	66.0				

Cordova Hydrology - COP 9 and SHER 1						
Percent chance exceedance	Recurrence interval	2016 Regression (cfs)	2003 Regression (cfs)	COP9 Gage Record	COP9 Measured Discharge Coorelated to USGS Gage 15min (cfs)	COP9 Gage Daily to USGS Gage Daily (cfs)
	Q2D2	32.56	43.81	5.67	7.30	4.75
50	2	81.4	109.5	14.2	18.3	11.9
20	5	131.0	145.3	25.8	24.0	15.5
10	10	169.0	169.9	35.1	27.4	17.7
4	25	221.0	200.8	48.5	31.5	20.3
2	50	261.0	224.1	59.6	34.4	22.2
1	100	305.0	246.4	71.7	37.1	23.9
0.5	200	350.0	270.5	84.8	39.8	25.6
0.2	500	413.0	301.3			

APPENDIX D: HYDRAULIC ANALYSIS

Existing Culvert

HY-8 Culvert Analysis Report

Crossing Discharge Data

Discharge Selection Method: User Defined
Table 1 - Summary of Culvert Flows at Crossing: CAB 2 Existing 36

Headwater Elevation (ft)	Total Discharge (cfs)	Existing 36 Discharge (cfs)	Roadway Discharge (cfs)	Iterations
$\mathbf{5 5 . 9 0}$	2.51	2.51	0.00	1
$\mathbf{5 6 . 4 0}$	6.30	6.30	0.00	1
$\mathbf{5 6 . 5 8}$	8.00	8.00	0.00	1
$\mathbf{5 6 . 6 7}$	9.00	9.00	0.00	1
$\mathbf{5 6 . 7 7}$	10.10	10.10	0.00	1
$\mathbf{5 6 . 8 4}$	10.90	10.90	0.00	1
$\mathbf{5 6 . 9 1}$	11.70	11.70	0.00	1
$\mathbf{5 9 . 2 2}$	45.09	45.09	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Existing 36

Culvert Data: Existing 36

Table 1 - Culvert Summary Table: Existing 36

Total Disch arge (cfs)	$\begin{aligned} & \text { Culve } \\ & \text { rt } \\ & \text { Disch } \\ & \text { arge } \\ & \text { (cfs) } \end{aligned}$	Head water Elevat ion (ft)	$\begin{aligned} & \text { Inle } \\ & \mathrm{t} \\ & \text { Cont } \\ & \text { rol } \\ & \text { Dep } \\ & \text { th } \\ & \text { (ft) } \end{aligned}$	Outl et Cont rol Dep th (ft)	$\begin{aligned} & \text { Fl } \\ & \text { ow } \\ & \text { Ty } \\ & \text { pe } \end{aligned}$	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
$\begin{aligned} & 2.51 \\ & \mathrm{cfs} \end{aligned}$	$\begin{aligned} & 2.51 \\ & \mathrm{cfs} \end{aligned}$	55.90	0.71	$\begin{aligned} & 0.79 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { 2- } \\ & \text { M2 } \\ & \text { c } \end{aligned}$	0.52	0.49	$\begin{aligned} & \hline 0.4 \\ & 9 \end{aligned}$	0.40	3.31	2.10
$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	56.40	1.16	$\begin{aligned} & 1.29 \\ & 9 \end{aligned}$	$\begin{aligned} & 2- \\ & \text { M2 } \\ & \text { c } \end{aligned}$	0.82	0.79	$\begin{aligned} & 0.7 \\ & 9 \end{aligned}$	0.74	4.25	2.84
$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	56.58	1.31	$\begin{aligned} & 1.47 \\ & 5 \end{aligned}$	$\begin{aligned} & 2- \\ & \text { M2 } \\ & \text { c } \end{aligned}$	0.93	0.89	$\begin{aligned} & 0.8 \\ & 9 \end{aligned}$	0.87	4.55	3.05
$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	56.67	1.40	$\begin{aligned} & 1.57 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 2- } \\ & \text { M2 } \\ & \text { c } \end{aligned}$	0.98	0.95	$\begin{aligned} & 0.9 \\ & 5 \end{aligned}$	0.95	4.70	3.16
$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	56.77	1.49	$\begin{aligned} & 1.67 \\ & 2 \end{aligned}$	$\begin{aligned} & 2- \\ & \text { M2 } \\ & \text { c } \end{aligned}$	1.05	1.01	$\begin{aligned} & 1.0 \\ & 1 \end{aligned}$	1.03	4.86	3.26
$\begin{aligned} & 10.90 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.90 \\ & \mathrm{cfs} \end{aligned}$	56.84	1.55	$\begin{aligned} & 1.74 \\ & 3 \end{aligned}$	$\begin{aligned} & 2- \\ & \text { M2 } \\ & \text { c } \end{aligned}$	1.09	1.05	$\begin{aligned} & 1.0 \\ & 5 \end{aligned}$	1.09	4.97	3.34
$\begin{aligned} & 11.70 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 11.70 \\ & \text { cfs } \end{aligned}$	56.91	1.61	$\begin{aligned} & 1.81 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 2- } \\ & \text { M2 } \\ & \text { c } \\ & \hline \end{aligned}$	1.13	1.09	$\begin{aligned} & 1.0 \\ & 9 \end{aligned}$	1.15	5.07	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 55.10 ft ,
Outlet Elevation (invert): 54.70 ft
Culvert Length: 35.00 ft ,
Culvert Slope: 0.0114

Culvert Performance Curve Plot: Existing 36
Performance Curve
Culvert: Existing 36

Water Surface Profile Plot for Culvert: Existing 36
Crossing - CAB 2 Existing 36, Design Discharge - 11.7 cfs

Site Data - Existing 36

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 55.10 ft
Outlet Station: 35.00 ft
Outlet Elevation: 54.70 ft
Number of Barrels: 1

Culvert Data Summary - Existing 36

Barrel Shape: Circular
Barrel Diameter: 3.00 ft
Barrel Material: Corrugated Steel
Embedment: 0.00 in
Barrel Manning's n: 0.0240

Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting ($\mathrm{Ke}=0.9$)
Inlet Depression: None
Tailwater Data for Crossing: CAB 2 Existing 36

Table 2 - Downstream Channel Rating Curve (Crossing: CAB 2 Existing 36)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{2 . 5 1}$	53.89	0.40	2.10	0.28	0.59
$\mathbf{6 . 3 0}$	54.23	0.74	2.84	0.53	0.58
$\mathbf{8 . 0 0}$	54.36	0.87	3.05	0.62	0.58
$\mathbf{9 . 0 0}$	54.44	0.95	3.16	0.68	0.57
$\mathbf{1 0 . 1 0}$	54.52	1.03	3.26	0.73	0.57
$\mathbf{1 0 . 9 0}$	54.58	1.09	3.34	0.77	0.56
$\mathbf{1 1 . 7 0}$	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Existing 36
Tailwater Channel Option: Rectangular Channel
Bottom Width: 3.00 ft
Channel Slope: 0.0114
Channel Manning's n: 0.0350
Channel Invert Elevation: 53.49 ft
Roadway Data for Crossing: CAB 2 Existing 36
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 59.22 ft
Roadway Surface: Paved
Roadway Top Width: 26.00 ft
Crossing Discharge Data
Discharge Selection Method: User Defined
Table 3 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 6'

Headwater	Total	Proposed 6'	Roadway	Iterations
Elevation (ft)	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)	

$\mathbf{5 4 . 1 8}$	2.51	2.51	0.00	1
$\mathbf{5 4 . 4 9}$	6.30	6.30	0.00	1
$\mathbf{5 4 . 6 2}$	8.00	8.00	0.00	1
$\mathbf{5 4 . 6 9}$	9.00	9.00	0.00	1
$\mathbf{5 4 . 7 7}$	10.10	10.10	0.00	1
$\mathbf{5 4 . 8 3}$	10.90	10.90	0.00	1
$\mathbf{5 4 . 8 8}$	11.70	11.70	0.00	1
$\mathbf{5 9 . 2}$	67.51	67.51	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 6'

Culvert Data: Proposed 6'

Table 2 - Culvert Summary Table: Proposed 6'

Total Disch arge (cfs)	Culve rt Disch arge (cfs)	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
$\begin{aligned} & 2.51 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 2.51 \\ & \text { cfs } \end{aligned}$	54.18	0.26	0.35	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \\ & \hline \end{aligned}$	0.28	0.18	$\begin{aligned} & \hline 0.4 \\ & 0 \end{aligned}$	0.40	1.05	2.10

$\mathbf{6 . 3 0}$ cfs	6.30 cfs	54.49	0.53	0.66 0	$3-$ M1	0.49	0.33	0.7	0.74	1.43	2.84
$\mathbf{8 . 0 0}$	8.00 cfs	54.62	0.65	0.78 7	t	M1 cfs	0.57	0.38	0.8	0.87	1.54

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 53.83 ft ,
Outlet Elevation (invert): 53.49 ft
Culvert Length: 46.00 ft ,
Culvert Slope: 0.0074

Culvert Performance Curve Plot: Proposed 6'

Water Surface Profile Plot for Culvert: Proposed 6'

$$
\text { Crossing - CAB } 2 \text { Proposed 6', Design Discharge - } 11.7 \text { cfs }
$$

Culvert - Proposed 6', Culvert Discharge - 11.7 cfs

Site Data - Proposed 6'

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 50.91 ft
Outlet Station: 46.00 ft
Outlet Elevation: 50.57 ft
Number of Barrels: 1

Culvert Data Summary - Proposed 6'

Barrel Shape: Circular
Barrel Diameter: 6.00 ft
Barrel Material: Corrugated Steel
Embedment: 35.02 in
Barrel Manning's n: 0.0240 (top and sides)

Manning's n: 0.0350 (bottom)
Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting ($\mathrm{Ke}=0.9$)
Inlet Depression: None
Tailwater Data for Crossing: CAB 2 Proposed 6'

Table 4 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 6')

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{2 . 5 1}$	53.89	0.40	2.10	0.28	0.59
$\mathbf{6 . 3 0}$	54.23	0.74	2.84	0.53	0.58
$\mathbf{8 . 0 0}$	54.36	0.87	3.05	0.62	0.58
$\mathbf{9 . 0 0}$	54.44	0.95	3.16	0.68	0.57
$\mathbf{1 0 . 1 0}$	54.52	1.03	3.26	0.73	0.57
$\mathbf{1 . 9 0}$	54.58	1.09	3.34	0.77	0.56
$\mathbf{1 1 . 7 0}$	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 6'
Tailwater Channel Option: Rectangular Channel
Bottom Width: 3.00 ft
Channel Slope: 0.0114
Channel Manning's n: 0.0350
Channel Invert Elevation: 53.49 ft
Roadway Data for Crossing: CAB 2 Proposed 6'
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 59.22 ft
Roadway Surface: Paved
Roadway Top Width: 26.00 ft
Crossing Discharge Data
Discharge Selection Method: User Defined
Table 5 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 7'
Headwater Total \quad Proposed 7' \quad Roadway \quad Iterations

Elevation (ft)	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)	
$\mathbf{5 4 . 1 7}$	2.51	2.51	0.00	1
$\mathbf{5 4 . 4 8}$	6.30	6.30	0.00	1
$\mathbf{5 4 . 6 0}$	8.00	8.00	0.00	1
$\mathbf{5 4 . 6 8}$	9.00	9.00	0.00	1
$\mathbf{5 4 . 7 6}$	10.10	10.10	0.00	1
$\mathbf{5 4 . 8 1}$	10.90	10.90	0.00	1
$\mathbf{5 4 . 8 7}$	11.70	11.70	0.00	1
$\mathbf{5 9 . 2 2}$	63.30	63.30	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 7'
Total Rating Curve

Culvert Data: Proposed 7'

Table 3 - Culvert Summary Table: Proposed 7'

Total Disch arge (cfs)	$\begin{aligned} & \text { Culve } \\ & \text { rt } \\ & \text { Disch } \\ & \text { arge } \\ & \text { (cfs) } \end{aligned}$	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	Fl ow Ty pe	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)
2.51	2.51	54.17	0.26	0.34	3-	0.27	0.17	0.4	0.40	1.01	2.10

cfs	cfs			1	M1			0			
$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	54.48	0.54	$\begin{aligned} & 0.64 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.48	0.32	$\begin{aligned} & 0.7 \\ & 4 \end{aligned}$	0.74	1.38	2.84
$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	54.60	0.65	$\begin{aligned} & 0.77 \\ & 3 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.56	0.37	$\begin{aligned} & 0.8 \\ & 8 \end{aligned}$	0.87	1.50	3.05
$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	54.68	0.72	$\begin{aligned} & 0.84 \\ & 7 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.60	0.40	$\begin{aligned} & 0.9 \\ & 5 \end{aligned}$	0.95	1.55	3.16
$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.10 \\ & \mathrm{cfs} \end{aligned}$	54.76	0.78	$\begin{aligned} & 0.92 \\ & 7 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.65	0.44	$\begin{aligned} & 1.0 \\ & 3 \end{aligned}$	1.03	1.61	3.26
$\begin{aligned} & 10.90 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.90 \\ & \mathrm{cfs} \end{aligned}$	54.81	0.83	$\begin{aligned} & 0.98 \\ & 5 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.68	0.46	$\begin{aligned} & 1.0 \\ & 9 \end{aligned}$	1.09	1.66	3.34
$\begin{aligned} & 11.70 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 11.70 \\ & \mathrm{cfs} \end{aligned}$	54.87	0.88	$\begin{aligned} & 1.04 \\ & 3 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \\ & \hline \end{aligned}$	0.71	0.48	$\begin{aligned} & 1.1 \\ & 5 \end{aligned}$	1.15	1.70	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 53.83 ft ,
Outlet Elevation (invert): 53.49 ft
Culvert Length: 46.00 ft ,
Culvert Slope: 0.0074

Culvert Performance Curve Plot: Proposed 7'

Water Surface Profile Plot for Culvert: Proposed 7'
Crossing - CAB 2 Proposed 7', Design Discharge - 11.7 cfs
Culvert - Proposed 7', Culvert Discharge - 11.7 cfs

Site Data - Proposed 7'

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 49.91 ft
Outlet Station: 46.00 ft
Outlet Elevation: 49.57 ft
Number of Barrels: 1

Culvert Data Summary - Proposed 7'

Barrel Shape: Circular
Barrel Diameter: 5.81 ft
Barrel Material: Corrugated Steel
Embedment: 47.03 in
Barrel Manning's n: 0.0240 (top and sides)

Manning's n: 0.0350 (bottom)
Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting ($\mathrm{Ke}=0.9$)
Inlet Depression: None
Tailwater Data for Crossing: CAB 2 Proposed 7'

Table 6 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 7')

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{2 . 5 1}$	53.89	0.40	2.10	0.28	0.59
$\mathbf{6 . 3 0}$	54.23	0.74	2.84	0.53	0.58
$\mathbf{8 . 0 0}$	54.36	0.87	3.05	0.62	0.58
$\mathbf{9 . 0 0}$	54.44	0.95	3.16	0.68	0.57
$\mathbf{1 0 . 1 0}$	54.52	1.03	3.26	0.73	0.57
$\mathbf{1 0 . 9 0}$	54.58	1.09	3.34	0.77	0.56
$\mathbf{1 1 . 7 0}$	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 7'
Tailwater Channel Option: Rectangular Channel
Bottom Width: 3.00 ft
Channel Slope: 0.0114
Channel Manning's n: 0.0350
Channel Invert Elevation: 53.49 ft
Roadway Data for Crossing: CAB 2 Proposed 7'
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 59.22 ft
Roadway Surface: Paved
Roadway Top Width: 26.00 ft
Crossing Discharge Data
Discharge Selection Method: User Defined

Table 7 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 81x59
Headwater Total Proposed \quad Roadway \quad Iterations

Elevation (ft)	Discharge (cfs)	81x59 Discharge (cfs)	Discharge (cfs)	
$\mathbf{5 4 . 1 5}$	2.51	2.51	0.00	1
$\mathbf{5 4 . 4 5}$	6.30	6.30	0.00	1
$\mathbf{5 4 . 5 7}$	8.00	8.00	0.00	1
$\mathbf{5 4 . 6 5}$	9.00	9.00	0.00	1
$\mathbf{5 4 . 7 3}$	10.10	10.10	0.00	1
$\mathbf{5 4 . 7 9}$	10.90	10.90	0.00	1
$\mathbf{5 4 . 8 5}$	11.70	11.70	0.00	1
$\mathbf{5 9 . 2 2}$	67.15	67.15	0.00	Overtopping

Rating Curve Plot for Crossing: CAB 2 Proposed 81×59
Total Rating Curve
Crossing: CAB 2 Proposed 81×59

Culvert Data: Proposed 81x59

Table 4 - Culvert Summary Table: Proposed 81x59

Total Disch arge (cfs)	$\begin{aligned} & \text { Culve } \\ & \text { rt } \\ & \text { Disch } \\ & \text { arge } \\ & \text { (cfs) } \end{aligned}$	Head water Elevat ion (ft)	Inle t Cont rol Dep th (ft)	Outl et Cont rol Dep th (ft)	$\begin{aligned} & \text { Fl } \\ & \text { ow } \\ & \text { Ty } \\ & \text { pe } \end{aligned}$	Nor mal Dep th (ft)	Criti cal Dep th (ft)	Out let De pth (ft)	Tailw ater Dept h (ft)	Outl et Velo city (ft/s)	Tailw ater Veloc ity (ft/s)

$\begin{aligned} & 2.51 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 2.51 \\ & \mathrm{cfs} \end{aligned}$	54.15	0.27	$\begin{aligned} & 0.32 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { 3- } \\ & \text { M1 } \end{aligned}$ t	0.26	0.16	$\begin{aligned} & \hline 0.4 \\ & 0 \end{aligned}$	0.40	0.94	2.10
$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	54.45	0.54	$\begin{aligned} & 0.62 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.47	0.30	$\begin{aligned} & 0.7 \\ & 4 \end{aligned}$	0.74	1.30	2.84
$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	54.57	0.64	$\begin{aligned} & 0.75 \\ & 5 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.55	0.35	$\begin{aligned} & 0.8 \\ & 7 \end{aligned}$	0.87	1.41	3.05
$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	54.65	0.69	$\begin{aligned} & 0.82 \\ & 9 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.59	0.38	$\begin{aligned} & 0.9 \\ & 5 \end{aligned}$	0.95	1.47	3.16
$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.10 \\ & \mathrm{cfs} \end{aligned}$	54.73	0.75	$\begin{aligned} & 0.91 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \text { t } \end{aligned}$	0.64	0.41	$\begin{aligned} & 1.0 \\ & 3 \end{aligned}$	1.03	1.53	3.26
$\begin{aligned} & 10.90 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.90 \\ & \mathrm{cfs} \end{aligned}$	54.79	0.79	$\begin{aligned} & 0.96 \\ & 8 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \text { t } \end{aligned}$	0.67	0.43	$\begin{aligned} & 1.0 \\ & 9 \end{aligned}$	1.09	1.57	3.34
$\begin{aligned} & 11.70 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 11.70 \\ & \mathrm{cfs} \end{aligned}$	54.85	0.83	$\begin{aligned} & 1.02 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \\ & \hline \end{aligned}$	0.70	0.45	$\begin{aligned} & 1.1 \\ & 5 \end{aligned}$	1.15	1.61	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 53.82 ft ,
Outlet Elevation (invert): 53.49 ft
Culvert Length: 46.00 ft ,
Culvert Slope: 0.0072

Culvert Performance Curve Plot: Proposed 81x59
Performance Curve

Water Surface Profile Plot for Culvert: Proposed 81x59
Crossing - CAB 2 Proposed 81x59, Design Discharge - 11.7 cfs
Culvert - Proposed 81×59, Culvert Discharge - 11.7 cfs

Site Data - Proposed 81x59

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 51.82 ft
Outlet Station: 46.00 ft
Outlet Elevation: 51.49 ft
Number of Barrels: 1

Culvert Data Summary - Proposed 81x59

Barrel Shape: Pipe Arch
Barrel Span: 80.37 in
Barrel Rise: 59.00 in
Barrel Material: Steel or Aluminum
Embedment: 24.00 in

Barrel Manning's n: 0.0280 (top and sides)
Manning's n: 0.0350 (bottom)
Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting $(\mathrm{Ke}=0.9)$
Inlet Depression: None
Tailwater Data for Crossing: CAB 2 Proposed 81x59
Table 8 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 81x59)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{2 . 5 1}$	53.89	0.40	2.10	0.28	0.59
$\mathbf{6 . 3 0}$	54.23	0.74	2.84	0.53	0.58
$\mathbf{8 . 0 0}$	54.36	0.87	3.05	0.62	0.58
$\mathbf{9 . 0 0}$	54.44	0.95	3.16	0.68	0.57
$\mathbf{1 0 . 1 0}$	54.52	1.03	3.26	0.73	0.57
$\mathbf{1 0 . 9 0}$	54.58	1.09	3.34	0.77	0.56
$\mathbf{1 1 . 7 0}$	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 81x59
Tailwater Channel Option: Rectangular Channel
Bottom Width: 3.00 ft
Channel Slope: 0.0114
Channel Manning's n: 0.0350
Channel Invert Elevation: 53.49 ft
Roadway Data for Crossing: CAB 2 Proposed 81x59
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 59.22 ft
Roadway Surface: Paved
Roadway Top Width: 26.00 ft
Crossing Discharge Data
Discharge Selection Method: User Defined

Table 9 - Summary of Culvert Flows at Crossing: CAB 2 Proposed 73x55
\(\left.$$
\begin{array}{lllll}\hline \begin{array}{l}\text { Headwater } \\
\text { Elevation (ft) }\end{array} & \begin{array}{l}\text { Total } \\
\text { Discharge } \\
\text { (cfs) }\end{array} & \begin{array}{l}\text { Proposed } \\
73 \times 55 \\
\text { Discharge } \\
\text { (cfs) }\end{array}
$$ \& \begin{array}{l}Roadway

Discharge

(cfs)\end{array} \& Iterations\end{array}\right]\)| | | | |
| :--- | :--- | :--- | :--- |
| $\mathbf{5 4 . 1 7}$ | 2.51 | 2.51 | 0.00 |
| $\mathbf{5 4 . 4 8}$ | 6.30 | 6.30 | 0.00 |
| $\mathbf{5 4 . 6 1}$ | 8.00 | 8.00 | 0.00 |
| $\mathbf{5 4 . 6 8}$ | 9.00 | 9.00 | 0.00 |
| $\mathbf{5 4 . 7 6}$ | 10.10 | 10.10 | 0.00 |
| $\mathbf{5 4 . 8 2}$ | 10.90 | 10.90 | 0.00 |
| $\mathbf{5 4 . 8 8}$ | 11.70 | 11.70 | 0.00 |
| $\mathbf{5 9 . 2 2}$ | 60.77 | 60.77 | 0.00 |

Rating Curve Plot for Crossing: CAB 2 Proposed 73×55

Culvert Data: Proposed 73×55

Table 5 - Culvert Summary Table: Proposed 73×55

Total	Culve	Head	Inle	Outl	Fl	Nor	Criti	Out	Tailw	Outl	Tailw
Disch	rt	water	t	et	ow	mal	cal	let	ater	et	ater
arge	Disch	Elevat	Cont	Cont	Ty	Dep	Dep	De	Dept	Velo	Veloc
(cfs)	arge ion rol rol	pe	th	th	pth	$\mathrm{h}(\mathrm{ft})$	city	ity			
	(cfs)	(ft)	Dep	Dep		(ft)	(ft)	(ft)		$(\mathrm{ft} / \mathrm{s}$	$(\mathrm{ft} / \mathrm{s})$

			th (ft)	th (ft))	
$\begin{aligned} & 2.51 \\ & \mathrm{cfs} \end{aligned}$	$\begin{aligned} & 2.51 \\ & \text { cfs } \end{aligned}$	54.17	0.30	$\begin{aligned} & 0.34 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.28	0.17	$\begin{aligned} & \hline 0.4 \\ & 0 \end{aligned}$	0.40	1.04	2.10
$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 6.30 \\ & \text { cfs } \end{aligned}$	54.48	0.58	0.65	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.50	0.32	$\begin{aligned} & 0.7 \\ & 4 \end{aligned}$	0.74	1.42	2.84
$\begin{aligned} & 8.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 8.00 \\ & \mathrm{cfs} \end{aligned}$	54.61	0.69	$\begin{aligned} & 0.78 \\ & 5 \end{aligned}$	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.58	0.38	$\begin{aligned} & 0.8 \\ & 7 \end{aligned}$	0.87	1.53	3.05
$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 9.00 \\ & \text { cfs } \end{aligned}$	54.68	0.74	0.86	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.63	0.41	$\begin{aligned} & 0.9 \\ & 5 \end{aligned}$	0.95	1.60	3.16
$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.10 \\ & \text { cfs } \end{aligned}$	54.76	0.80	0.94	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.67	0.44	$\begin{aligned} & 1.0 \\ & 3 \end{aligned}$	1.03	1.66	3.26
$\begin{aligned} & 10.90 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 10.90 \\ & \mathrm{cfs} \end{aligned}$	54.82	0.84	1.00	$\begin{aligned} & 3- \\ & \text { M1 } \\ & \mathrm{t} \end{aligned}$	0.71	0.46	$\begin{aligned} & 1.0 \\ & 9 \end{aligned}$	1.09	1.71	3.34
$\begin{aligned} & 11.70 \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & 11.70 \\ & \mathrm{cfs} \end{aligned}$	54.88	0.88	$\begin{aligned} & 1.06 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 3- } \\ & \text { M1 } \\ & \mathrm{t} \\ & \hline \end{aligned}$	0.74	0.49	$\begin{aligned} & 1.1 \\ & 5 \end{aligned}$	1.15	1.75	3.40

Culvert Barrel Data

Culvert Barrel Type Straight Culvert
Inlet Elevation (invert): 53.82 ft ,
Outlet Elevation (invert): 53.49 ft
Culvert Length: 46.00 ft ,
Culvert Slope: 0.0072

Culvert Performance Curve Plot: Proposed 73x55
Performance Curve

Water Surface Profile Plot for Culvert: Proposed 73×55
Crossing - CAB 2 Proposed 73x55, Design Discharge - 11.7 cfs
Culvert - Proposed 73x55, Culvert Discharge - 11.7 cfs

Site Data - Proposed 73x55

Site Data Option: Culvert Invert Data
Inlet Station: 0.00 ft
Inlet Elevation: 51.82 ft
Outlet Station: 46.00 ft
Outlet Elevation: 51.49 ft
Number of Barrels: 1

Culvert Data Summary - Proposed 73x55

Barrel Shape: Pipe Arch
Barrel Span: 73.00 in
Barrel Rise: 55.00 in
Barrel Material: Steel or Aluminum

Embedment: 24.00 in

Barrel Manning's n: 0.0280 (top and sides)
Manning's n: 0.0350 (bottom)
Culvert Type: Straight
Inlet Configuration: Thin Edge Projecting $(\mathrm{Ke}=0.9)$
Inlet Depression: None
Tailwater Data for Crossing: CAB 2 Proposed 73x55
Table 10 - Downstream Channel Rating Curve (Crossing: CAB 2 Proposed 73x55)

Flow (cfs)	Water Surface Elev (ft)	Velocity (ft/s)	Depth (ft)	Shear (psf)	Froude Number
$\mathbf{2 . 5 1}$	53.89	0.40	2.10	0.28	0.59
$\mathbf{6 . 3 0}$	54.23	0.74	2.84	0.53	0.58
$\mathbf{8 . 0 0}$	54.36	0.87	3.05	0.62	0.58
$\mathbf{9 . 0 0}$	54.44	0.95	3.16	0.68	0.57
$\mathbf{1 0 . 1 0}$	54.52	1.03	3.26	0.73	0.57
$\mathbf{1 0 . 9 0}$	54.58	1.09	3.34	0.77	0.56
$\mathbf{1 1 . 7 0}$	54.64	1.15	3.40	0.82	0.56

Tailwater Channel Data - CAB 2 Proposed 73x55
Tailwater Channel Option: Rectangular Channel
Bottom Width: 3.00 ft
Channel Slope: 0.0114
Channel Manning's n: 0.0350
Channel Invert Elevation: 53.49 ft
Roadway Data for Crossing: CAB 2 Proposed 73x55
Roadway Profile Shape: Constant Roadway Elevation
Crest Length: 200.00 ft
Crest Elevation: 59.22 ft
Roadway Surface: Paved
Roadway Top Width: 26.00 ft

Low Flow Depths																	
STA	IDENTIFIER	Qfish (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h (in)	b1 (ft)	x	side slope ($\mathrm{H}: \mathrm{V}$)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	2.510	Trapezoid	1.560696	0.30989	0.005	0.0300	4	0.35	4.15	5.036286	0.518143	1.5:1	0.67	2.51	0.000	1.61
53+24.00	Design	2.510	Trapezoid	1.898978	0.23089	0.005	0.0300	7.5	0.24	2.90	8.224589	0.362295	1.5:1	0.67	2.51	0.000	1.32
53+24.00	Design	2.510	Trapezoid	2.102784	0.19815	0.005	0.0300	10	0.20	2.45	10.6121	0.306051	1.5:1	0.67	2.51	0.000	1.19
53+24.00	Design	2.510	Trapezoid	2.445673	0.157975	0.005	0.0300	15	0.16	1.93	15.48141	0.240705	1.5:1	0.67	2.51	0.000	1.03

Bankfull Flow Depths																	
STA	IDENTIFIER	Q2 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	x	side slope ($\mathrm{H}: \mathrm{V}$)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	6.300	Trapezoid	2.860229	0.496689	0.005	0.0300	4	0.59	7.03	5.758591	0.879296	1.5:1	0.67	6.30	0.000	2.20
53+24.00	Design	6.300	Trapezoid	3.381019	0.386469	0.005	0.0300	7.5	0.42	4.99	8.748492	0.624246	1.5:1	0.67	6.30	0.000	1.86
53+24.00	Design	6.300	Trapezoid	3.713169	0.335791	0.005	0.0300	10	0.35	4.23	11.05798	0.528992	1.5:1	0.67	6.30	0.000	1.70
53+24.00	Design	6.300	Trapezoid	4.28659	0.270718	0.005	0.0300	15	0.28	3.34	15.83413	0.417063	1.5:1	0.67	6.30	0.000	1.47

50 Year Flood Flow																	
STA	IDENTIFIER	Q50 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	x	side slope ($\mathrm{H}: \mathrm{V}$)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	10.900	Trapezoid	4.143721	0.64823	0.005	0.0300	4	0.80	9.57	6.392365	1.196182	1.5:1	0.67	10.90	0.000	2.63
53+24.00	Design	10.900	Trapezoid	4.797861	0.520287	0.005	0.0300	7.5	0.57	6.89	9.22156	0.86078	1.5:1	0.67	10.90	0.000	2.27
53+24.00	Design	10.900	Trapezoid	5.234176	0.456607	0.005	0.0300	10	0.49	5.85	11.4632	0.731602	1.5:1	0.67	10.90	0.000	2.08
53+24.00	Design	10.900	Trapezoid	6.004303	0.371639	0.005	0.0300	15	0.39	4.63	16.15629	0.578147	1.5:1	0.67	10.90	0.000	1.82

100 Year Flood Flow																	
STA	IDENTIFIER	Q100 (cfs)	Shape	A (ft2)	R (ft)	S	n	b2 (ft)	h (ft)	h(in)	b1 (ft)	x	side slope ($\mathrm{H}: \mathrm{V}$)		RHS equation	Equilibrate	V (fps)
53+24.00	Design	11.700	Trapezoid	4.349413	0.67036	0.005	0.0300	4	0.83	9.95	6.48818	1.24409	1.5:1	0.67	11.70	0.000	2.69
53+24.00	Design	11.700	Trapezoid	5.021869	0.540326	0.005	0.0300	7.5	0.60	7.18	9.294149	0.897075	1.5:1	0.67	11.70	0.000	2.33
53+24.00	Design	11.700	Trapezoid	5.473272	0.474879	0.005	0.0300	10	0.51	6.10	11.52561	0.762804	1.5:1	0.67	11.70	0.000	2.14
53+24.00	Design	11.700	Trapezoid	6.272669	0.387057	0.005	0.0300	15	0.40	4.82	16.20605	0.603024	1.5:1	0.67	11.70	0.000	1.87

road
\qquad

Worksheet 2-2. Computations of bankfull mean velocity and bankfull discharge using various methods.

Bankfull VELOCITY \& DISCHARGE Estimates								
Stream:	Elsner Creek			Location: Cordova, AK				
Date:		Stream Type:		Landscape Type:				
Observers:				HUC:	- -	-- --	-- --	-- -
INPUT VARIABLES				OUTPUT VARIABLES				
Bankfull Riffle Cross-Sectional Area		3.3	$\begin{aligned} & \hline \hline \mathbf{A}_{\mathrm{bkf}} \\ & \left(\mathrm{ft}^{2}\right) \\ & \hline \hline \end{aligned}$	Bankfull Riffle Mean Depth			1.1	$\begin{aligned} & \hline \mathbf{d}_{\mathrm{bkf}} \\ & (\mathrm{ft}) \end{aligned}$
Bankfull Riffle Width		3	$\begin{gathered} \hline \hline \mathrm{W}_{\mathrm{bkf}} \\ (\mathrm{ft}) \end{gathered}$	Wetted Perimeter$\approx\left(2 * d_{\mathrm{bk}}\right)+\mathrm{W}_{\mathrm{bkf}}$			5.2	$\begin{aligned} & \hline \hline W_{p} \\ & \text { (ft) } \\ & \hline \hline \end{aligned}$
D_{84} Particle Size at Riffle		55	$\begin{aligned} & \hline \hline \boldsymbol{D}_{84} \\ & (\mathrm{~mm}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline D_{84} \text { Particle Size in Feet } \\ D_{84}(\mathrm{~mm}) / 304.8 \\ \hline \end{gathered}$			0.18045	$\begin{array}{l\|l} \hline D_{84} \\ (\mathrm{ft}) \end{array}$
Bankfull Slope		0.005	$\begin{aligned} & \hline \mathbf{S}_{\mathrm{bkf}} \\ & (\mathrm{ft/ft}) \\ & \hline \end{aligned}$	Hydraulic Radius $\mathrm{A}_{\text {bkf }} / \mathrm{W}_{\mathrm{p}}$			0.63462	$\begin{gathered} \hline \mathbf{R} \\ \text { (ft) } \\ \hline \end{gathered}$
Gravitational Acceleration		32.2	$\begin{gathered} \mathbf{g} \\ \left(\mathrm{ft} / \mathrm{sec}^{2}\right) \end{gathered}$	Relative Roughness $R(\mathrm{ft}) / D_{84}(\mathrm{ft})$			3.51692	$\begin{gathered} \hline \mathbf{R} / \boldsymbol{D}_{84} \\ (\mathrm{ft} / \mathrm{tt}) \end{gathered}$
Drainage Area		0.08	$\begin{aligned} & \hline \text { DA } \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	Shear Velocity$\mathrm{u}^{\star}=(\mathrm{gRS})^{1 / 2}$			0.31965	$\begin{gathered} \mathbf{u}^{*} \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{gathered}$
ESTIMATION METHODS					Bankfull VELOCITY		BankfullDISCHARGE	
$\begin{gathered}\text { 1. Friction } \\ \text { Factor }\end{gathered} \begin{gathered}\text { Relative } \\ \text { Roughness }\end{gathered} \quad \bar{u}=\left[2.83+5.66 * \log \left\{R / D_{84}\right\}\right] u^{*}$					1.89	$\mathrm{ft} / \mathrm{sec}$	6.25	cfs
2. Roughness Coefficient: a) Manning's n from Friction Factor/Relative					1.73	$\mathrm{ft} / \mathrm{sec}$	5.71	cfs
2. Roughness Coefficient: $\bar{u}=1.49 * R^{2 / 3} * S^{1 / 2} / n$ b) Manning's n from Stream Type (Fig. 2-31) $n=\square$						$\mathrm{ft} / \mathrm{sec}$		cfs
						$\mathrm{ft} / \mathrm{sec}$		cfs
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)						$\mathrm{ft} / \mathrm{sec}$		cfs
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)						$\mathrm{ft} / \mathrm{sec}$		cfs
4. Continuity Equations: a) USG Return Period for Bankfull Q		age Data Q	$\overline{\bar{u}}=Q / A$	year		$\mathrm{ft} / \mathrm{sec}$		cfs
4. Continuity Equations: b) Reg		Curves	$\bar{u}=Q / A$			$\mathrm{ft} / \mathrm{sec}$		cfs

Protrusion Height Options for the D_{84} Term in the Relative Roughness Relation (R/ \boldsymbol{D}_{84}) - Estimation Method 1

Option 1. For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D_{84} sand dune protrusion height in ft for the D_{84} term in method 1.

Option 2. For boulder-dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D_{84} boulder protrusion height in ft for the D_{84} term in method 1 .

Option 3. For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D_{84} bedrock protrusion height in ft for the D_{84} term in method 1 .

Option 4. For log-influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the \log on upstream side if embedded. Substitute the D_{84} protrusion height in ft for the D_{84} term in method 1.

Worksheet 2-2. Computations of bankfull mean velocity and bankfull discharge using various methods.

Bankfull VELOCITY \& DISCHARGE Estimates								
Stream:	Elsner Creek			Location: Cordova, AK				
Date:		Stream Type:		Landscape Type:				
Observers:				HUC:	-	--	---	----
INPUT VARIABLES				OUTPUT VARIABLES				
Bankfull Riffle Cross-Sectional Area		4.4	$\begin{aligned} & \hline \hline \mathbf{A}_{\mathrm{bkf}} \\ & \left(\mathrm{ft}^{2}\right) \end{aligned}$	Bankfull Riffle Mean Depth			1.1	$\begin{aligned} & \hline \mathbf{d}_{\mathrm{bkf}} \\ & (\mathrm{ft}) \end{aligned}$
Bankfull Riffle Width		4	$\begin{gathered} \hline \hline \mathrm{W}_{\mathrm{bkf}} \\ (\mathrm{ft}) \end{gathered}$	Wetted Perimeter$\approx\left(2^{*} \mathrm{~d}_{\mathrm{bk}}\right)+\mathrm{W}_{\mathrm{bkf}}$			6.2	$\begin{aligned} & \hline \hline \mathrm{W}_{\mathrm{p}} \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$
D_{84} Particle Size at Riffle		55	$\begin{gathered} \hline \boldsymbol{D}_{84} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline D_{84} \text { Particle Size in Feet } \\ D_{84}(\mathrm{~mm}) / 304.8 \\ \hline \end{gathered}$			0.18045	$\begin{aligned} & \hline \boldsymbol{D}_{84} \\ & \text { (ft) } \end{aligned}$
Bankfull Slope		0.005	$\begin{aligned} & \hline \hline \mathbf{S}_{\mathrm{bkf}} \\ & (\mathrm{ft} / \mathrm{ft}) \end{aligned}$	Hydraulic Radius $\mathrm{A}_{\text {bkf }} / \mathrm{Wp}_{\mathrm{p}}$			0.70968	$\begin{aligned} & \hline \hline \mathbf{R} \\ & \text { (ft) } \end{aligned}$
Gravitational Acceleration		32.2	$\underset{\left(\mathrm{ft} / \mathrm{sec}^{2}\right)}{\mathbf{g}}$	Relative Roughness R (ft) / $D_{84}(\mathrm{ft})$			3.9329	$\begin{gathered} \hline \hline \mathbf{R} / \boldsymbol{D}_{84} \\ (\mathrm{ft} / \mathrm{ft}) \end{gathered}$
Drainage Area		0.08	$\begin{aligned} & \hline \hline \text { DA } \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	Shear Velocity$\mathrm{u}^{*}=(\mathrm{gRS})^{1 / 2}$			0.33802	$\begin{gathered} \mathbf{u}^{*} \\ (\mathrm{ft} / \mathrm{sec}) \\ \hline \end{gathered}$
ESTIMATION METHODS					Bankfull VELOCITY		Bankfull DISCHARGE	
1. Friction FactorRelative Roughness$\quad \bar{u}=\left[2.83+5.66 * \log \left\{R / D_{84}\right\}\right] u^{*}$					2.09	$\mathrm{ft} / \mathrm{sec}$	9.22	cfs
2. Roughness Coefficient: a) Manning's n from Friction Factor/Relative				$\begin{aligned} & \hline \text { tive } \\ & \hline 0.045 \end{aligned}$	1.86	$\mathrm{ft} / \mathrm{sec}$	8.20	cfs
2. Roughness Coefficient: $\bar{u}=1.49 * R^{2 / 3} * S^{1 / 2} / n$ b) Manning's n from Stream Type (Fig. 2-31) $n=\square$						$\mathrm{ft} / \mathrm{sec}$		cfs
2. Roughness Coefficient: $\bar{u}=1.49^{*} R^{2 / 3} * S^{1 / 2} / n$ c) Manning's n from Jarrett (USGS): $n=0.39^{*} \leqslant^{0.38} * R^{0.16}$						$\mathrm{ft} / \mathrm{sec}$		cfs
Note: This equation is applicable to steep, step/pool, high boundary roughness, cobble- and boulder-dominated stream systems;i.e., for $\quad \boldsymbol{n}=$ Stream Types A1, A2, A3, B1, B2, B3, C2 \& E3								
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)						$\mathrm{ft} / \mathrm{sec}$		cfs
3. Other Methods (Hey, Darcy-Weisbach, Chezy C, etc.)						$\mathrm{ft} / \mathrm{sec}$		cfs
4. Continuity Equations: a) USGS Gage Data $\bar{u}=Q / A$ Return Period for Bankfull Q $Q=\square$				year		$\mathrm{ft} / \mathrm{sec}$		cfs
4. Continuity Equations: b) Regional Curves $\bar{u}=Q / A$						$\mathrm{ft} / \mathrm{sec}$		cfs
Protrusion Height Options for the D_{84} Term in the Relative Roughness Relation (R/D \boldsymbol{D}_{84})-Estimation Method 1								
Option 1. For sand-bed channels: Measure 100 "protrusion heights" of sand dunes from the downstream side of feature to the top of feature. Substitute the D_{84} sand dune protrusion height in ft for the D_{84} term in method 1 .								
Option 2. For boulder-dominated channels: Measure 100 "protrusion heights" of boulders on the sides from the bed elevation to the top of the rock on that side. Substitute the D_{84} boulder protrusion height in ff for the D_{84} term in method 1 .								
Option 3. For bedrock-dominated channels: Measure 100 "protrusion heights" of rock separations, steps, joints or uplifted surfaces above channel bed elevation. Substitute the D_{84} bedrock protrusion height in ff for the D_{84} term in method 1 .								
Option 4. For log-influenced channels: Measure "protrustion heights" proportionate to channel width of log diameters or the height of the log on upstream side if embedded. Substitute the D_{84} protrusion height in ff for the D_{84} term in method 1 .								

[^0]: Alaska Department of Fish and Game (ADF\&G), 2020. Fish Passage Inventory Database (FPID) - Inventory and Assessment. [Online]
 Available at: http://www.adfg.alaska.gov/index.cfm?adfg=fishpassage.database [Accessed 0108 2020].

 Curran, Janet H., Meyer, David F., \& Tasker, Gary D. (2003). "Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada." U.S. Geological Survey Water-Resources Investigations Report 03-4188. Anchorage, Alaska.

 Curran, J.H, N.A. Barth, A.G. Veilleux, R.T. Ourso. 2016. Estimating the Magnitude and Frequency at Gaged and Ungagged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012. U.S. Geological Survey Scientific Investigations Report 2016-5024.

 Department of the Army U.S. Army Corps of Engineers (USACE). Hydraulic Design of Flood Control Channels. Engineer Manual (EM) 1110-2-1601, June 1994.

 Forest Service Stream Simulation Working Group, 2008. Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road Crossings, San Dimas,

[^1]: Vegetation:

 Bedrock Observed:

