18 MILE FISH PASSAGE IMPROVEMENT PROJECTS

Hydrologic and Hydraulic Report

Cordova, Alaska

Prepared for:

U.S. Fish and Wildlife Service Region 7-Alaska 1011 E Tudor Road Anchorage, Alaska 99503

Prepared by:

DOWL 4041 B Street Anchorage, Alaska 99503

August 2020

TABLE OF CONTENTS

1.0	INTF	RODUCTION	.1
	1.1	Objective	1
	1.2	Existing Conditions	1
	1.3	Design Criteria	6
	1.4	Right-of-Way	7
2.0	GEC	TECHNICAL CONDITIONS	. 7
	2.1	COP 20	7
		2.1.1 Upstream	7
		2.1.2 Downstream	7
		2.1.3 Soil Bearing Capacity	7
		2.1.4 Construction Recommendations	7
	2.2	COP 22	8
		2.2.1 Upstream	8
		2.2.2 Downstream	8
		2.2.3 Soil Bearing Capacity	8
		2.2.4 Construction Recommendations	8
	2.3	COP 25	8
		2.3.1 Upstream	8
		2.3.2 Downstream	8
		2.3.3 Soil Bearing Capacity	9
		2.3.4 Construction Recommendations	9
	2.4	Summary	9
3.0	GEC	MORPHIC ANALYSIS	. 9
	3.1	Stream Morphology and Crossing Characteristics	9
		3.1.1 COP 20	9
		3.1.2 COP 22	10
		3.1.3 COP 25	11
		3.1.4 SHER 02	12
	3.2	Substrate Analysis	13
		3.2.1 COP 20	13
		3.2.2 COP 22	15
		3.2.3 COP 25	16
		3.2.4 SHER 02	18
4.0	HYD		19
	4.1	Drainage Area Characteristics	19
	4.2	Methodology	19
	4.3	Results of Flood Flow Analysis	20
		4.3.1 COP 20	20
		4.3.2 COP 22	21
		4.3.3 COP 25	22
		4.3.4 SHER 02	22
50	нур	RAULIC ANALYSIS	23
5.5	5.1	HY-8 Analysis.	23
	5.2	Synthetic Width Method	23
	5.3	Low Flow Channel	24
60		IGN AI TERNATIVES	2∆
0.0			- T

7.0	RECOMMENDATIONS	
	7.1.1 COP 20	
	7.1.2 COP 22	
	7.1.3 COP 25	
	7.1.4 SHER 02	27
	7.2 Rejected Alternatives	27
	7.2.1 COP 20	27
	7.2.2 COP 22	
	7.2.3 COP 25	
8.0	REFERENCES	

FIGURES

Figure 1: COP 20 Drainage Basin	2
Figure 2: COP 22 Drainage Basin	3
Figure 3: COP 25 Drainage Basin	4
Figure 4: SHER 02 Drainage Basin	5
Figure 5: Summary of COP 20 Pebble Count	14
Figure 6: Summary of COP 22 Pebble Count	15
Figure 7: Summary of COP 25 Pebble Count	17
Figure 8: Summary of SHER 02 Pebble Count	18

TABLES

Table 1: Stream Characteristics of West Fork 18 Mile Creek at COP 20	10
Table 2: Stream Characteristics of Middle Fork 18 Mile Creek at COP 22	11
Table 3: Stream Characteristics of East Fork 18 Mile Creek at COP 25	12
Table 4: Stream Characteristics of Sheridan River Tributary at SHER 02	13
Table 5: COP 20 Pebble Count Summary	15
Table 6: COP 22 Pebble Count Summary	16
Table 7: COP 25 Pebble Count Summary	17
Table 8: SHER 02 Pebble Count Summary	19
Table 9: Estimated Peak Flows for COP 20	21
Table 10: Estimated Peak Flows for COP 22	21
Table 11: Estimated Peak Flows for COP 25	22
Table 12: Estimated Peak Flows for SHER 02	23
Table 13: Synthetic Width Method	24

APPENDICES

APPENDIX A: GEOMORPHIC ANALYSIS APPENDIX B: SUBSTRATE DESIGN APPENDIX C: HYDROLOGIC ANALYSIS APPENDIX D: HYDRAULIC ANALYSIS

ACRONYMS

ADF&G	Alaska Department of Fish and Game
cfs	cubic feet per second
CRWP	Copper River Watershed Project
DOT&PF	Alaska Department of Transportation and Public Facilities
FPID	Fish Passage Inventory Database
fps	feet per second
ĤW/D	headwater-to-depth ratio
NOAA	National Oceanic and Atmospheric Administration
OHW	ordinary high water
Q/A	flow versus area
ROW	right-of-way
USDA	United States Department of Agriculture
USFWS	United States Fish and Wildlife Service
USFS	United States Forest Service
USGS	United States Geological Survey

1.0 INTRODUCTION

1.1 Objective

The objective of this project is to design one low water crossing and three culvert replacements for fish passage sites along the Copper River Highway in the Copper River Watershed and Delta near Cordova, Alaska. The replacement culverts will enhance flood and fish passage and ecologic function at the Copper River Highway crossings of the West, Middle, and East Fork of 18 Mile Creek by simulating the natural creek channel and provide conveyance of at least the 100-year flood flow. The culverts will also enhance maintenance conditions at each crossing and reduce the likelihood of future infrastructure damage caused by flooding along the Copper River Highway. The 18 Mile Creek system is an anadromous stream with various stems, originating from glacial outwash plains to mountain headwaters and flowing south to the Alaganik Slough. The Copper River Watershed and Delta is a system of relic channels, connected upstream and downstream, with base flows that are continuously changing over time. The four project crossing drainage basins are shown in Figures 1 through 4.

West, Middle, and East Fork 18 Mile Creek are identified in the Alaska Department of Fish and Game's (ADF&G) Anadromous Waters Catalog as number 212-10-10010-2041-3015, 212-10-10010-2041, and 212-10-10010-2041-3010, respectively. The stream crossings have been identified as No. 20100486 (COP 20), No. 20100488 (COP 22), No. 20100491 (COP 25), respectively, in the ADF&G's Fish Passage Inventory Database (FPID) and given two Red ratings (COP 20 and COP 25) and one Green rating (COP 22) with a Red constriction ratio. The low water crossing site is currently a small, crushed culvert on Goat Camp Road draining a Sheridan River tributary marsh-wetland area. This crossing is identified as No. 20101902 (SHER 02) in the FPID and given a Gray rating. All four crossings have been identified by ADF&G, United States Fish and Wildlife Service (USFWS), Copper River Watershed Project (CRWP), United States Forest Service (USFS), and the National Oceanic and Atmospheric Administration (NOAA) as an impediment and barrier to upstream fish migration as well as causing disruption to the Delta's hydrology, reducing its ecological function.

1.2 Existing Conditions

The 18 Mile Creek system provides habitat for coho salmon, pink salmon, and Dolly Varden char and spawning habitat for cutthroat trout. The existing culvert at COP 20 consists of one 5-foot diameter round culvert with poor alignment, apparent beaver activity, and damage at the culvert inlet. The culvert is undersized and has minor corrosion. There is a scour pool and sediment accumulation at the culvert outlet. The culvert is approximately 57 feet long with a slope of -0.3 percent and constricts the stream by 16 percent according to the ADF&G report. Stream constriction leads to excessive velocities at the culvert outlets and through the pipes, hindering the ability of fish to swim through the structure. The existing culvert at COP 22 consists of one 6-foot diameter round culvert with poor alignment, apparent beaver activity, and minor corrosion. There is a scour pool and sediment accumulation at the culvert outlet. The culvert is approximately 61 feet long with a slope of -0.7 percent and constricts the stream by 26 percent according to the ADF&G report. The existing culverts at COP 25 consist of two 6-foot diameter round culverts with corrosion and damage at the inlets and outlets. There is apparent beaver activity and the culverts have debris grates at the inlets. There is a pool at the inlet and a large scour pool at the outlet. The culverts are approximately 61 feet long with a slope of -1.8 and 1 percent and constrict the stream by 65 percent according to the ADF&G report. The

existing culvert at SHER 02 consists of one 3-foot diameter round culvert that is submerged and crushed. The culvert is corroded and approximately 17 feet long with a slope of -0.18 percent.

To meet project objectives, a topographic survey of the project area was completed to facilitate hydraulic modeling. Stream gauge data was collected by USFWS and CRWP between September 2018 and November 2019 to determine peak flow estimates. Additional hydrologic and hydraulic computations, including the synthetic width method, were performed as a comparison and to determine fish passage design flows and required flood flow capacity. A geomorphic analysis was used to assess sediment transport and to incorporate natural channel characteristics into the final design. A geotechnical analysis, completed in April 2019 by others, was used to investigate subsurface soil conditions at the three fish passage crossings. Design alternatives were evaluated to determine the most economical means of replacing the existing structures to improve ecological function and flood conveyance.

Figure 1: COP 20 Drainage Basin

Figure 2: COP 22 Drainage Basin

Figure 3: COP 25 Drainage Basin

Figure 4: SHER 02 Drainage Basin

1.3 Design Criteria

The geomorphic analog method and synthetic width method are the preferred design approaches for the COP 20, COP 22, and COP 25 crossings of 18 Mile Creek. The design of the proposed fish passage culverts is based on criteria and guidelines contained in the United States Fish and Wildlife Service (USFWS) Fish Passage Design Guidelines (Revision 5) released February 2020, which follows the United States Forest Service (USFS) stream simulation approach with modifications. The USFS stream simulation approach is described in the 2008 Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings. Key criteria from the sources include:

- The constructed channel within the crossing shall not differ from the reference reach condition under normal flow conditions regarding channel width, cross-sectional area, gradient, substrate, and ability to pass floating debris;
- In relic channels or sloughs, with no defining bankfull features, a synthetic width may be estimated for culvert sizing by utilizing a calculated 2-year flood event with an average cross-sectional velocity of less than 4 feet per second (fps) and ideally similar to adjacent water velocities and water depth;
- The culvert width shall be at least 1.0 times bankfull width, with a minimum diameter of 5 feet;
- The embedment depth shall be the greater of 40 percent of the diameter or two feet for circular culverts;
- Embedment depth shall be the greater of 20 percent of the rise or two feet for all other culverts;
- Substrate material within the crossing shall be dynamically stable up to and including the 50-year flood;
- Stream banks inside the culvert shall be stable up to and including the 100-year flood;
- A continuous low flow channel that simulates the reference reach shall be incorporated in the substrate material;
- Culvert gradient shall be within 25% of the natural channel grade;
- Culverts shall be corrugated; and
- Structures shall be designed to accommodate at least the 100-year flood flow, preferably with a headwater-to-depth (HW/D) ratio of 0.8.

The design approach used for the SHER 02 low water crossing is based on criteria and guidelines contained in the 2006 U.S. Department of Agriculture (USDA) Forest Service *Low-Water Crossings: Geomorphic, Biological, and Engineering Design Considerations.* Key criteria from the sources include:

- Use 4:1 or flatter foreslopes on embankments;
- Provide two- to four-feet of freeboard armoring above the 100-year flood flow height;
- Must pass the 50- or 100-year flood flow through the armored cross section;
- Ideal grade into and out of the ford is 10 percent; and
- Riprap layer should be 1.5 times the maximum rock size for the depth of the riprap layer.

1.4 Right-of-Way

The Copper River Highway is owned by Alaska Department of Transportation and Public Facilities and Goat Camp Road is owned by USFS. The Copper River Highway is centered within a 200-foot-wide right-of-way (ROW) and Goat Camp Road is centered within a 60-foot road easement. Utilities

There are no known utilities located at any of the crossings of Goat Camp Road and the Copper River Highway.

2.0 GEOTECHNICAL CONDITIONS

A geotechnical investigation consisting of two borings at each crossing was conducted at the three fish passage crossing locations by Northern Geotechnical Engineering, Inc. in April 2019. The geotechnical report for USFWS Fish Passage Improvements was completed by Northern Geotechnical Engineering, Inc. The subsurface conditions encountered, soil bearing capacity, and site-specific geotechnical construction recommendations are summarized below.

2.1 COP 20

2.1.1 Upstream

- 0 to 5 feet: Poorly graded gravel with sand.
- 5 to 7 feet: Well graded gravel with silt and sand. Groundwater encountered at approximately 5 feet.
- 7 to 9 feet: Well graded sand with gravel.
- 9 to 20 feet: Well graded gravel with sand.

2.1.2 <u>Downstream</u>

- 0 to 7 feet: Well graded sand with silt and gravel. Groundwater encountered at approximately 6 feet.
- 7 to 9 feet: Poorly graded sand with gravel.
- 9 to 15 feet: Well graded gravel with sand.
- 15 to 21.5 feet: Well graded sand with gravel.

2.1.3 Soil Bearing Capacity

The allowable soil bearing capacity of 3,900 pounds per square foot may be used for a box culvert foundation on undisturbed sand and gravel or compacted structural fill.

2.1.4 <u>Construction Recommendations</u>

Site bearing soils approximately 12 to 13 feet below the road surface consist of loose to medium dense well graded gravel with sand. Excavation is required a minimum of 2 feet below the bottom of the culvert and backfilled with geotextile material and Subgrade Type F material.

2.2 COP 22

2.2.1 Upstream

- 0 to 7 feet: Well graded sand with silt and gravel.
- 7 to 12 feet: Well graded gravel with silt and sand. Groundwater encountered at approximately 7 feet.
- 12 to 20 feet: Well graded gravel with sand.

2.2.2 <u>Downstream</u>

- 0 to 5 feet: Well graded gravel with silt and sand.
- 5 to 10 feet: Well graded sand with silt and gravel. Groundwater encountered at approximately 7 feet.
- 10 to 12 feet: Well graded gravel with sand.
- 12 to 21.5 feet: Poorly graded sand with gravel.

2.2.3 Soil Bearing Capacity

The allowable soil bearing capacity of 3,900 pounds per square foot may be used for a box culvert foundation on undisturbed sand and gravel or compacted structural fill.

2.2.4 Construction Recommendations

Site bearing soils approximately 12 to 13 feet below the road surface consist of medium dense well graded gravel with sand. Excavation is required a minimum of 1 foot below the bottom of the culvert and backfilled with geotextile material and Subgrade Type F material.

2.3 COP 25

2.3.1 <u>Upstream</u>

- 0 to 5 feet: Well graded gravel with sand.
- 5 to 7 feet: Well graded sand with silt and gravel. Groundwater encountered at approximately 5 feet.
- 7 to 9 feet: Well graded sand with gravel.
- 9 to 15 feet: Well graded gravel with sand.
- 15 to 21.5 feet: Poorly graded sand and sand with silt and gravel.

2.3.2 Downstream

- 0 to 7 feet: Poorly graded sand with silt and gravel.
- 7 to 15 feet: Poorly graded sand with gravel to well graded sand with gravel. Groundwater encountered at approximately 7 feet.
- 15 to 16 feet: Poorly graded sand with silt.

• 16 to 21.5 feet: Peat and poorly graded sand with silt.

2.3.3 Soil Bearing Capacity

The allowable soil bearing capacity of 3,900 pounds per square foot may be used for a box culvert foundation on undisturbed sand and gravel or compacted structural fill.

2.3.4 Construction Recommendations

Site bearing soils approximately 12 to 13 feet below the road surface consist of loose well graded to poorly graded sand and gravel. Excavation is required a minimum of 2 feet below the bottom of the culvert. Organic material observed at the south side of Copper River Highway must be completely removed and inspected to ensure all organic materials have been removed. The excavation may be backfilled with Type A material up to two feet below the bottom of the culvert. Then placement of geotextile material and Subgrade Type F material is required, as described in the next section.

2.4 Summary

Additional recommendations provided in the appended geotechnical report include using culvert embedment material Subgrade Type F, extended one foot below the bottom of the culvert, 18 inches to both sides of the culvert, and a minimum of one foot above the culvert. A layer of Type 2 geotextile fabric should be placed between the Subgrade Type F material and the native soil or Type A material. A layer of Type 2 geotextile fabric should be placed between the Subgrade Type F material and the native soil layer of Subgrade Type F material.

3.0 GEOMORPHIC ANALYSIS

A site investigation was conducted on September 23 through 26, 2019. During the site visit, DOWL engineers and a USFWS hydrologist took channel measurements, conducted pebble counts, and observed bedform features. The reconnaissance level map, field notes, and pebble count data from the site investigation are included in Appendix A.

3.1 Stream Morphology and Crossing Characteristics

The 18 Mile Creek is a system of relic channels that are dynamic due to geomorphic processes such as erosion and deposition of sediments from the mountains and glacial outwash plains. The connected system is located on the edge of an inactive glacier outwash and is separated from the Sheridan River by a dike but still receives groundwater flows. The measured bankfull widths and depths may not be representative of the current channel flow regime. Along with field data, the synthetic width method was used to inform channel design and is described in Section 5.2 Synthetic Width Method.

3.1.1 <u>COP 20</u>

West Fork 18 Mile Creek originates on the edge of a glacial outwash, north of the Copper River highway and flows south to the Alaganik Slough.

Upstream of the COP 20 Copper River Highway crossing, West Fork 18 Mile Creek is meandering and is primarily precipitation driven with groundwater influence from the Sheridan

River. The predominant bedform features consist of slow, long pools with occasional rock riffles and woody debris steps and ponded areas. Upstream is low gradient and the banks are undercut, but vegetation, rocks and woody debris provide bank stabilization. There are signs of erosion including vegetated midchannel bars and areas of grassy terraces. The stream substrate consists of a various range of gravel sizes. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

Downstream of the COP 20 Copper River Highway crossing, West Fork 18 Mile Creek has a large scour pool and sediment wedge and is a fairly linear system that merges with the Alaganik Slough tributary north of the COP 20 crossing and eventually merges with the Middle Fork 18 Mile Creek and East Fork 18 Mile Creek. The predominant bedform features consist of slow pools with riffles and scattered between sections of ponded areas. The banks are undercut, but willow and alder vegetation provide bank stabilization. There are signs of erosion including vegetated bars and areas of grassy terraces. The stream substrate consists of gravel and small cobble. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

A reference reach was not defined at this crossing, but various cross sections were measured upstream and downstream of the crossing. Observed bankfull widths ranged from 10.5 feet to 12 feet, with an average bankfull depth of approximately 1.5 feet. The surveyed water surface elevation (WSE) slope is approximately 0.20 percent. The surveyed WSE slope was compared to the slope of the line connecting grade control features. Riffles and small steps provide grade control along the longitudinal profile, consisting of course gravels and small cobbles, and woody debris. Sediment and debris transport are high upstream and downstream of the crossing. There is evidence of beaver activity along West Fork 18 Mile Creek and within the vicinity of the crossing.

The observed stream characteristics of West Fork 18 Mile Creek at COP 20 are summarized in Table 1. Ordinary high water (OHW) widths and channel constriction were taken from the ADF&G FPID report.

Stream Parameter	Existing Conditions
Surveyed WSE Slope	0.20 percent
Measured Bankfull Width	10.5-12 feet
Measured Bankfull Depth	1.5+/- feet
Channel Constriction	12-16 percent per ADF&G FPID
Bedform Features	Riffle-Pools

 Table 1: Stream Characteristics of West Fork 18 Mile Creek at COP 20

The Copper River Highway roadway embankment at COP 20 is well vegetated. No end sections or headwalls are present at the West Fork 18 Mile Creek COP 20 culvert. There is between 0.5 and 1.25 feet of roadway cover over the existing culvert.

3.1.2 <u>COP 22</u>

Middle Fork 18 Mile Creek originates on the edge of a glacial outwash, east of the COP 20 crossing, north of the Copper River highway and flows south to the Alaganik Slough.

Upstream of the COP 22 Copper River Highway crossing, Middle Fork 18 Mile Creek is meandering and is primarily precipitation driven with groundwater influence from Sheridan River. The predominant bedform features consist of riffles, pools, and runs with ponded areas and areas of split flow. Gravel bars and banks are present with several locations of grassy terraces. Upstream is low gradient and the banks are undercut, but vegetation and rocks provide bank stabilization. The stream substrate consists of a various range of gravel sizes to small cobbles. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

Downstream of the COP 22 Copper River Highway crossing, Middle Fork 18 Mile Creek has a large scour pool and sediment wedge and is a fairly linear system that flows into a manmade pond and eventually merges with the East Fork 18 Mile Creek and West Fork 18 Mile Creek. The predominant bedform features consist of long pools and riffles, ponded areas, and gravel bars. There are gravel and undercut banks, but willow and alder vegetation provide bank stabilization. The stream substrate consists of gravel and small cobble. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

A reference reach was not defined at this crossing, but various cross sections were measured upstream and downstream of the crossing. Observed bankfull widths ranged from 15 feet to 23 feet, with an average bankfull depth of approximately 2 feet. The surveyed water surface elevation (WSE) slope is approximately 0.44 percent. The surveyed WSE slope was compared to the slope of the line connecting grade control features. Riffles provide grade control along the longitudinal profile, consisting of course gravels and small cobbles, and woody debris. Sediment and debris transport are high upstream and downstream of the crossing. There is evidence of beaver activity along Middle Fork 18 Mile Creek and within the vicinity of the crossing.

The observed stream characteristics of Middle Fork 18 Mile Creek at COP 22 are summarized in Table 2. OHW widths and channel constriction were taken from the ADF&G FPID report.

Stream Parameter	Existing Conditions
Surveyed WSE Slope	0.44 percent
Measured Bankfull Width	15-23 feet
Measured Bankfull Depth	2+/- feet
Channel Constriction	26-33 percent per ADF&G FPID
Bedform Features	Riffle-Pools

Table 2: Stream Chara	acteristics of Middle F	ork 18 Mile Creek at COP 22
-----------------------	-------------------------	-----------------------------

The Copper River Highway roadway embankment at COP 22 is well vegetated. No end sections or headwalls are present at the Middle Fork 18 Mile Creek COP 22 culvert. There is between 1.25 and 2.5 feet of roadway cover over the existing culvert.

3.1.3 <u>COP 25</u>

East Fork 18 Mile Creek originates on the piedmont of the Chugach Mountains to the north of the crossing, at the edge of the glacier outwash.

Upstream of the COP 25 Copper River Highway crossing, East Fork 18 Mile Creek is meandering. The predominant bedform features consist of riffles and pools with ponded areas. Gravel bars and banks are present with several locations of grassy terraces. Upstream is low gradient and the banks are undercut, but willow and alder vegetation provide bank stabilization. The stream substrate consists of gravel ranging from very fine to very coarse gravel. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

Downstream of the COP 25 Copper River Highway crossing, East Fork 18 Mile Creek has a large scour pool and sediment wedge and is meandering. It eventually merges with the Middle Fork 18 Mile Creek and West Fork 18 Mile Creek. The predominant bedform features consist of pools and riffles with woody debris and gravel bars. There are undercut banks, but willow and alder vegetation provide bank stabilization. The stream substrate consists of coarse gravel to small cobble. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

A reference reach was not defined at this crossing, but various cross sections were measured upstream and downstream of the crossing. Observed bankfull widths ranged from 23 feet to 34 feet, with an average bankfull depth of approximately 2 feet. The surveyed water surface elevation (WSE) slope is approximately 0.13 percent. The surveyed WSE slope was compared to the slope of the line connecting grade control features. Riffles provide grade control along the longitudinal profile, consisting of course gravels and small cobbles, and woody debris. Sediment and debris transport are low upstream and downstream of the crossing. There is evidence of beaver activity along East Fork 18 Mile Creek and within the vicinity of the crossing.

The observed stream characteristics of East Fork 18 Mile Creek at COP 25 are summarized in Table 3. OHW widths and channel constriction were taken from the ADF&G FPID report.

Stream Parameter	Existing Conditions
Surveyed WSE Slope	0.13 percent
Measured Bankfull Width	23-34 feet
Measured Bankfull Depth	2+/- feet
Channel Constriction	26-35 percent per ADF&G FPID
Bedform Features	Riffle-Pools

 Table 3: Stream Characteristics of East Fork 18 Mile Creek at COP 25

The Copper River Highway roadway embankment at COP 25 is not vegetated and is eroding at the inlets and outlets. No end sections or headwalls are present at the East Fork 18 Mile Creek COP 22 culvert, but the inlets have makeshift pipe inlet debris guards. There is between 2.2 and 4 feet of roadway cover over the existing culverts.

3.1.4 <u>SHER 02</u>

The Sheridan River tributary flowing to the SHER 02 crossing originates in the marsh-wetlands southeast of the Sheridan River.

Upstream of the Goat Camp Road crossing, the Sheridan River tributary is a ponded wetland with various channel stems and areas of channelized flow. The predominant bedform features

consist of slow, long pools with ponded water. Upstream is low gradient and the banks are undercut, grassy terraces. The stream substrate consists of mobile sand and small gravel. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

Downstream of the Goat Camp Road crossing, the Sheridan River tributary is a ponded wetland with no clear stems or channelized flow. There are gravel bars and undercut banks, vegetated with alder and willow immediately downstream of the crossing. The stream substrate consists of mobile sand and small gravel and areas of organics over gravel. Riparian vegetation includes grasses, moss, alder, willow, hemlock, and spruce trees. The floodplain is extensive and unconfined.

A reference reach was not defined at this crossing, but one cross section was measured upstream of the crossing. Observed bankfull width was 5 feet, with a bankfull depth of approximately 10 inches. The channel slope is approximately 0.26 percent. There is evidence of beaver activity along the Sheridan River tributary and within the vicinity of the crossing.

The observed stream characteristics of Sheridan River Tributary at SHER 02 are summarized in Table 4.

Stream Parameter	Existing Conditions
Slope	0.26 percent
Measured Bankfull Width	5 feet
Measured Bankfull Depth	10+/- inches
Bedform Features	Pools

 Table 4: Stream Characteristics of Sheridan River Tributary at SHER 02

The Goat Camp Road roadway embankment at SHER 02 is partially vegetated and eroding at the inlets and outlets. No end sections or headwalls are present at the Sheridan River Tributary SHER 02 culvert and the culvert is submerged, crushed, and corroded. There is less than half a foot of roadway cover over the existing culvert.

3.2 Substrate Analysis

3.2.1 <u>COP 20</u>

Two pebble counts were conducted at COP 20 approximately 650 feet and 800 feet upstream of the West Fork 18 Mile Creek crossing inlet. The pebble counts were performed at two surveyed cross section locations. The average D_{84} particle size at COP 20 was 60 millimeters (2.4 inches). The armor layer at the COP 20 crossing was found to range from fine gravel to small cobble, with most of the stream substrate consisting of very coarse gravel. A summary of the pebble counts is shown in Figure 5.

Pebble Count Data - COP 20

Figure 5: Summary of COP 20 Pebble Count

The observed D_{100} , D_{84} , and D_{50} particle sizes for COP 20 are summarized in Table 5. For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed culvert. The Fuller-Thompson equations will be used to size particles smaller than the D50 to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Particle	Count 1	Count 2
Size	650 feet Upstream	800 feet Upstream
D ₁₀₀ (mm)	90	90
D ₈₄ (mm)	45	70
D ₅₀ (mm)	22	37

Table 5: COP 20 Pebble Count Summary

3.2.2 <u>COP 22</u>

One pebble count was conducted at COP 22 approximately 350 feet upstream of the Middle Fork 18 Mile Creek crossing. The pebble count was completed at one of the surveyed cross section locations. The average D_{84} particle size at COP 22 was 58 millimeters (2.3 inches). The armor layer at the COP 22 crossing was found to range from fine gravel to small cobble, with most of the stream substrate consisting of very coarse cobble. A summary of the pebble count is shown in Figure 6.

The observed D_{100} , D_{84} , and D_{50} particle sizes for COP 22 are summarized in Table 6. For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed culvert. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Particle	Count 1
Size	350 feet Upstream
D ₁₀₀ (mm)	128
D ₈₄ (mm)	58
D ₅₀ (mm)	32

3.2.3 <u>COP 25</u>

Three pebble counts were conducted at COP 25 approximately 55 feet and 155 feet upstream of the East Fork 18 Mile Creek crossing inlet and 500 feet downstream of the crossing outlet. The pebble counts were performed at the three surveyed cross section locations. The average D_{84} particle size at COP 25 upstream was 28 millimeters (1.1 inches) and downstream was 48 millimeters (1.9 inches). The armor layer at the COP 25 crossing upstream was found to range from medium sand to very coarse gravel, with the majority of the stream substrate consisting of medium to coarse gravel and the crossing downstream was found to range from fine gravel to very small cobble, with the majority of the stream substrate consisting of very coarse gravel. A summary of the pebble counts is shown in Figure 7.

Figure 7: Summary of COP 25 Pebble Count

The observed D_{100} , D_{84} , and D_{50} particle sizes for COP 25 are summarized in Table 7. For stream substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the proposed culvert. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. Substrate design is included in Appendix B.

Particle	Count 1	Count 2	Count 3
Size	55 feet Upstream	155 feet Upstream	500 feet Downstream
D ₁₀₀ (mm)	64	64	90
D ₈₄ (mm)	28	28	48
D ₅₀ (mm)	11	11	32

3.2.4 <u>SHER 02</u>

One pebble count was conducted at SHER 02 approximately 90 feet upstream of the existing culvert crossing inlet. The average D_{84} particle size at SHER 02 was 35 millimeters (1.4 inches). The armor layer at the SHER 02 crossing was found to range from fine gravel to very coarse gravel, with most of the stream substrate consisting of coarse gravel. A summary of the pebble count is shown in Figure 8.

Pebble Count Data - SHER 02

Figure 8: Summary of SHER 02 Pebble Count

The observed D_{100} , D_{84} , and D_{50} particle sizes for SHER 02 are summarized in Table 8. For the low flow channel substrate design, a stream bed mix will be specified based on the particle size distribution of the natural substrate observed onsite and to mitigate entrainment of bed material during Q_{100} flows. This will allow for natural sediment transport through the low flow crossing. The Fuller-Thompson equations will be used to size particles smaller than the D_{50} to provide adequate fines to fill voids and seal the simulation stream bed. The substrate will be used as the drivable surface of the low flow crossing. The drivable surface will extend from the channel bed to the existing road surface elevation to provide the maximum available freeboard for the crossing. Substrate design is included in Appendix B.

Particle	Count 1
Size	90 feet Upstream
D ₁₀₀ (mm)	64
D ₈₄ (mm)	35
D ₅₀ (mm)	18

Table 8: SHER 02 Pebble Count Summary

All pebble counts were performed on September 24 and 25, 2019. The D₈₄ particle represents that size of which 84 percent of the streambed particles are expected to be smaller in size and is typically used as the basis for sizing rock that is only transported downstream during large flood events. Visual observations in the vicinity of the crossings agree with the pebble count results.

4.0 HYDROLOGIC ANALYSIS

4.1 Drainage Area Characteristics

The West Fork 18 Mile Creek COP 20 drainage basin flowing to Copper River Highway is approximately 345 acres (0.54 square miles) in size. The drainage basin is undeveloped and consists of wetlands and forested area within the glacial outwash area.

The Middle Fork 18 Mile Creek COP 22 drainage basin flowing to Copper River Highway is approximately 1,209 acres (1.9 square miles) in size. The drainage basin is undeveloped and consists of wetlands, forested area, and some mountain runoff within the glacial outwash area and includes Snag Lake and Holbrook Pond.

The East Fork 18 Mile Creek COP 25 drainage basin flowing to Copper River Highway is approximately 1,584 acres (2.5 square miles) in size. The drainage basin is undeveloped and consists of wetlands, forested area, and mountain runoff at the edge of the glacial outwash area and includes an upstream pond called Dead Tree Lake.

The Sheridan River tributary SHER 02 drainage basin flowing to Goat Camp Road is approximately 20 acres (0.03 square miles) in size. The drainage basin is undeveloped and consists of wetlands and forested area within the glacial outwash area.

4.2 Methodology

Several methods were used to estimate peak discharges for the 18 Mile Creek crossings including the 2003 and the 2016 Regional Regression Equations, and correlations to the USGS Gauge's 8 peak flow measurements.

USFWS and CRWP collected discharge measurements at sites COP 20, 22, and 25 and two local pressure transducer gauges recorded stage at COP 22 and 25 between September 2018 and September 2019. USFWS provided a data summary report with the tentative peak streamflow estimates based on correlations to the USGS Gauge's 8 peak flow measurements

(2013-2019). With the initial data, the COP 20 and COP 22 rating curves were flatter and more linear compared to the steeper rating curve for COP 25 which may be a result of not having higher flow data. An analysis was performed to remove two high March flows from the COP 25 rating curve to determine the percent increase in the flood frequency estimate by including the higher flows in the rating curve. The percent increase was applied to the flows for COP 20 for comparison. Peak flows for COP 22 were updated with the longer gauge record including information through March 2020. Additional flood frequency estimates were derived from USGS Glacier River Trib. gauge using curves that related 18 Mile Creek flow measurements to the USGS gauge discharge. The Summary of Hydrology Data Collected for COP 20, 22 & 25 report is included in Appendix C.

The 2016 Regional Regression Equations published by the United States Geological Survey (USGS) in the Scientific Investigations Report 2016-5024 were used to estimate peak discharges for each crossing. The USGS PRISM data for the drainage areas was used to find a mean annual precipitation value of 116.7 inches for COP 20, 116.9 for COP 22, 134.9 inches for COP 25, and 104.8 inches for SHER 02. The drainage basins for COP 20, 22, and 25 are within the 0.4 square mile lower limit area and 1,000 square mile upper limit area and the annual precipitations are within the range of 8 to 280 inches on which the regression equations were developed; therefore, the regression equations are expected to return reasonable flow estimates. Results of the 2016 Regional Regression Equations were compared to the results of the 2003 USGS Regional Regression Equations. The USGS Regional Regression Equation computations are included in Appendix C.

Through discussions with USFWS, USFS, and Alaska Department of Transportation and Public Facilities (DOT&PF), it was determined that due to the upstream floodplain connectivity of the system, the correlated peak flow analysis from the collected 2018 to 2020 gauge data provide the best estimate for peak flows on COP 20, 22, and 25. Further evaluation of the existing culverts was performed to determine their flow capacity and resulting headwater depths. When comparing those elevations to the floodplain elevations, floodplain connectivity between culverts was verified. This would also coincide with the USFS and DOT&PF having few issues with road overtopping though the culvert hydraulics show them undersized.

The drainage basin for SHER 02 is not within the applicable drainage basin size range for the regression equations but the flows were evaluated and used for comparison. A flow versus area (Q/A) comparison method was also used to estimate peak discharges for SHER 02. The Q/A comparison was made against the flows calculated for COP 25 based on correlations to the USGS Gauge's 8 peak flow measurements.

4.3 Results of Flood Flow Analysis

4.3.1 <u>COP 20</u>

The peak runoff flows for each analysis method for COP 20 are shown in Table 9.

Storm Event (year)	Increase with March Flows for COP 25 (cfs)	COP 20 Flow Measurements Correlation to USGS Gauge Discharge (cfs)	2016 Regional Regression (cfs)	2003 Regional Regression (cfs)
2	148	128	68	82
5	171	144	111	109
10	182	152	143	127
25	196	161	188	151
50	205	168	222	168
100	214	174	260	185

Fable 9:	Estimated	Peak	Flows	for	COP	20
----------	-----------	------	-------	-----	-----	----

Notes: cfs = cubic feet per second

The estimated peak flows from the COP 20 flow measurements correlation to USGS Gauge Discharge were used for the hydraulic analyses for COP 20. See the Summary of Hydrology Data Collected for COP 20, 22 & 25 report included in Appendix C for additional information. Per the criteria identified in the project objectives, culverts for COP 20 have been evaluated for hydraulic capacity based on the 100-year peak flow of 174 cubic feet per second (cfs).

4.3.2 <u>COP 22</u>

The peak runoff flows for each analysis method for COP 22 are shown in Table 10.

Storm Event (year)	COP 22 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements (2013-2019) (cfs)	COP 22 Flow Measurements Correlation to USGS Gauge Discharge (cfs)	2016 Regional Regression (cfs)	2003 Regional Regression (cfs)	
2	319	691	210	189	
5	355	773	321	248	
10	375	819	404	288	
25	398	871	514	340	
50	413	905	598	380	
100	427	938	690	418	

 Table 10: Estimated Peak Flows for COP 22

Notes: cfs = cubic feet per second

The estimated peak flows from the COP 22 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements were used for the hydraulic analyses for COP 22. See the Summary of Hydrology Data Collected for COP 20, 22 & 25 report included in Appendix C for additional information. Per the criteria identified in the project objectives, culverts for COP 20 have been evaluated for hydraulic capacity based on the 100-year peak flow of 427 cubic feet per second (cfs).

4.3.3 <u>COP 25</u>

The peak runoff flows for each analysis method for COP 25 are shown in Table 11.

Storm Event (year)	COP 25 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements (2013-2019) (cfs)	COP 25 Flow Measurements Correlation to USGS Gauge Discharge (cfs)	2016 Regional Regression (cfs)	2003 Regional Regression (cfs)
2	705	962	305	294
5	801	1075	454	388
10	857	1139	564	452
25	919	1210	709	533
50	962	1258	819	595
100	1002	1302	940	654

Table 11: Estimated Peak Flows for COP 25

Notes: cfs = cubic feet per second

The estimated peak flows from the COP 25 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements were used for the hydraulic analyses. See the Summary of Hydrology Data Collected for COP 20, 22 & 25 report included in Appendix C for additional information. Per the criteria identified in the project objectives, culverts are evaluated for hydraulic capacity based on the 100-year peak flow of 1,002 cfs.

4.3.4 <u>SHER 02</u>

The peak runoff flows for each analysis method for SHER 02 are shown in Table 12.

Storm Event (year)	Q/A Method to COP 25 Correlation to USGS Gauge 8 Peak Flow Measurements (cfs)	2016 Regional Regression (cfs)	2003 Regional Regression (cfs)
2	9.1	5.9	14
5	10.3	10.8	19
10	11.1	14.8	22.4
25	11.9	20.6	26.6
50	12.4	25.3	29.7
100	12.9	30.6	32.7

Table 12: Estimated Peak Flows for SHER 02

Notes: cfs = cubic feet per second

The peak flows from the 2016 Regional Regression Equations were used for the hydraulic analyses. Per the criteria identified in the project objectives, the low water crossing must pass the 50- or 100-year peak flow of 25.3 cfs and 30.6 cfs, respectively, through the armored cross section.

5.0 HYDRAULIC ANALYSIS

5.1 HY-8 Analysis

The Federal Highway Administration's HY-8 software was used for the hydraulic analysis of proposed culverts. The software was used to model the hydraulic capacity at the 50-year and 100-year flow and calculate the overtopping flow. Results of the HY-8 analyses for the proposed culvert options are included in Section 7.0 Recommendations. Supporting calculations are included in Appendix D. Structures were selected for analysis based on span dictated by the measured bankfull widths, synthetic widths, and HW/D ratios.

5.2 Synthetic Width Method

The USFWS Fish Passage Design Guidelines (Revision 5) released February 2020 recommends using the synthetic width method in areas where geomorphic data shows as existing stream in a relic channel with no defining bankfull features. A synthetic width can be estimated for culvert sizing by using the 2-year peak flow with an average cross-sectional velocity of less than 4 fps with similar adjacent water velocities and depths. Calculated synthetic widths are shown in Table 13 and calculations can be found in Appendix D.

Stream	Calculated Synthetic Width
COP 20	11.3 feet
COP 22	17.9 feet
COP 25	26.2 feet

Table 13: Synthetic Width Method

5.3 Low Flow Channel

5.3.1 <u>COP 20, 22, and 25</u>

The low flow channels for the COP 20, 22, and 25 crossings were calculated based on guidance from the USFWS Fish Passage Design Guidelines (Revision 5). A "V" shaped thalweg with a cross sectional area of 15 to 30 percent of the bankfull cross sectional area and a minimum depth of four inches for small streams and up to twelve inches for later streams was used for design of the low flow channels.

5.3.2 <u>SHER 02</u>

The USDA Forest Service Low Water Crossings: Geomorphic, Biological, and Engineering Design Considerations (2006) was used as guidance to determine site hydraulic factors needed for design of the low water crossing at SHER 02. Manning's equation was used to determine flow depth and velocity through the respective components of the ford. Supporting calculations are included in Appendix D. The geometry of the crossing was selected for analysis based existing measured bankfull widths and to enable passage of a vehicle safety through the ford.

6.0 DESIGN ALTERNATIVES

Design guidelines recommend that culvert span for proposed replacement structures should be at least 1.0 times bankfull width. Since measured bankfull widths may not reflect channel characteristics, Synthetic Width Method was used in addition to the measured widths to develop crossing structure dimensions. One of the main design parameters in the analysis of design options is the HW/D: a numerical representation of the depth of the water at the culvert inlet to the height of the culvert relative to the stream bed. For stream simulation design, a HW/D of 0.8 or less is desirable when economically reasonable to reduce the likelihood for scour of bed material within the culvert during flood events and to provide freeboard for passing debris during flood events. A combination of measured bankfull information, synthetic width, and HW/D ratios was used to determine acceptable structures for the crossings.

Due to the 18 Mile system being connected upstream and downstream, an additional consideration for the design of the crossings included channel changes caused by downcutting or beaver activity.

Several replacement alternatives have been evaluated including various structural steel plate box culverts and aluminum box culvert sizes with floodplain relief culverts. Round and pipe arch culvert options are not practical due to the limited available cover and groundwater elevations at the project locations.

Culvert replacement options considered for COP 20 include:

- A 12-foot, 11-inch span by 6-foot, 0-inch rise aluminum box culvert embedded 2.6 feet with a 49-inch span by 33-inch rise aluminum pipe arch overflow culvert (Q100 HW/D=0.94),
- A 12-foot, 11-inch span by 6-foot, 0-inch rise aluminum box culvert embedded 2.6 feet with a 57-inch span by 38-inch rise aluminum pipe arch overflow culvert (Q100 HW/D=0.92),
- A 15-foot, 6-inch span by 7-foot, 3-inch rise aluminum box culvert embedded 3.8 feet with a 57-inch span by 38-inch rise aluminum pipe arch overflow culvert and headwalls and wingwalls (Q100 HW/D=0.80), and
- A 16-foot, 8-inch span by 7-foot, 4-inch rise steel box culvert embedded 3.9 feet (Q100 HW/D=0.94).

Culvert replacement options considered for COP 22 include:

- A 15-foot, 4-inch span by 6-foot, 5-inch rise aluminum box culvert embedded 1.5 feet with a 57-inch span by 38-inch aluminum pipe arch overflow culvert (Q100 HW/D=1.03),
- A 15-foot, 4-inch span by 6-foot, 5-inch rise aluminum box culvert embedded 1.5 feet with a 64-inch span by 43-inch aluminum pipe arch overflow culvert (Q100 HW/D=1.00),
- A 19-foot, 10-inch span by 7-foot, 8-inch rise aluminum box culvert embedded 2.7 feet with a 64-inch span by 43-inch aluminum pipe arch overflow culvert and headwalls and wingwalls (Q100 HW/D=0.85), and
- A 16-foot, 8-inch span by 7-foot, 4-inch rise steel box culvert embedded 3.9 feet (Q100 HW/D=1.14).

Culvert replacement options considered for COP 25 include:

- A 19-foot, 10-inch span by 7-foot, 8-inch rise aluminum box culvert embedded 1.5 feet with a 64-inch span by 43-inch aluminum pipe arch overflow culvert (Q100 HW/D=1.33),
- A 19-foot, 10-inch span by 7-foot, 8-inch rise aluminum box culvert embedded 1.5 feet with a 71-inch span by 47-inch aluminum pipe arch overflow culvert (Q100 HW/D=1.30),
- A 29-foot span by 8-foot, 3-inch rise aluminum box culvert embedded 3 feet with a 71-inch span by 47-inch steel pipe arch overflow culvert and headwalls and wingwalls (Q100 HW/D=1.06), and
- A 19-foot, 7-inch span by 7-foot, 5-inch rise steel box culvert embedded 1.5 feet with a 71-inch span by 47-inch steel pipe arch overflow culvert (Q100 HW/D=1.29).

7.0 RECOMMENDATIONS

7.1.1 <u>COP 20</u>

Replacing the 5-foot diameter round culvert at the COP 20 Copper River Highway crossing with a 15-foot, 6-inch span by 7-foot, 3-inch rise aluminum box culvert with a 57-inch span by 38-inch rise aluminum pipe arch and headwalls and wingwalls is the recommended option for improving fish passage and flood conveyance at the West Fork 18 Mile Creek crossing.

This replacement option is anticipated to convey the Q_{100} of 174 cfs and the Q_{50} of 168 with a HW/D ratio of approximately 0.80 and 0.78, respectively. The box culvert will be embedded 3.8 feet. Minimum allowable cover over the culvert is approximately 1.4 feet and maximum allowable cover over the culvert is approximately 4 feet. Roadway overtopping would occur at a flow of approximately 303 cfs.

The box culvert will provide an adequate span to facilitate construction of an approximately 12foot wide channel plus one- to two-feet of reconstructed stream bank on each side of the channel which meets the criteria of 1.5 times the D_{100} of the proposed substrate (12") for the stream banks. The culvert will be embedded with waterway bed material to mimic natural substrate. The simulated stream channel will be constructed as a roughened riffle and the downstream scour hole pool will be filled, tying into the downstream sediment wedge. Rock weirs will be placed at the stream tie-in points. Rock clusters will be constructed within the culvert using Class I riprap with a meandering low flow channel. Reconstructed stream banks upstream and downstream from the culvert will consist of woody debris bank reconstruction, vegetated mats, and willow staking. The embankment slopes will be stabilized with Class I riprap to provide erosion protection.

7.1.2 <u>COP 22</u>

Replacing the 6-foot diameter round culvert at the COP 22 Copper River Highway crossing with a 19-foot, 10-inch span by 7-foot, 8-inch rise aluminum box culvert with a 64-inch span by 43-inch rise aluminum pipe arch and headwalls and wingwalls is the recommended option for improving fish passage and flood conveyance at the Middle Fork 18 Mile Creek crossing.

This replacement option is anticipated to convey the Q_{100} of 427 cfs and the Q_{50} of 413 with a HW/D ratio of approximately 0.85 and 0.83, respectively. The box culvert will be embedded 2.7 feet. Minimum allowable cover over the culvert is approximately 1.4 feet and maximum allowable cover over the culvert is approximately 4 feet. Roadway overtopping would occur at a flow of approximately 650 cfs.

The box culvert will provide an adequate span to facilitate construction of an approximately 16.5-foot wide channel plus one- to two-feet of reconstructed stream bank on each side of the channel which meets the criteria of 1.5 times the D_{100} of the proposed substrate (12") for the stream banks. The culvert will be embedded with waterway bed material to mimic natural substrate. The simulated stream channel will be constructed as a roughened riffle and the downstream scour hole pool will be filled, tying into the downstream sediment wedge. Rock weirs will be place at the stream tie-in points. Rock clusters will be constructed stream banks upstream and downstream from the culvert will consist of woody debris bank reconstruction, vegetated

mats, and willow staking. The embankment slopes will be stabilized with Class I riprap to provide erosion protection.

7.1.3 <u>COP 25</u>

Replacing the two 6-foot diameter round culverts at the COP 25 Copper River Highway crossing with a 29-foot, 0-inch span by 8-foot, 3-inch rise aluminum box culvert with a 71-inch span by 47-inch rise steel pipe arch and headwalls and wingwalls is the recommended option for improving fish passage and flood conveyance at the East Fork 18 Mile Creek crossing.

This replacement option is anticipated to convey the Q_{100} of 1,002 cfs and the Q_{50} of 962 with a HW/D ratio of approximately 1.06 and 1.04, respectively. The box culvert will be embedded 3 feet. Minimum allowable cover over the culvert is approximately 1.4 feet and maximum allowable cover over the culvert is approximately 4 feet. Roadway overtopping would occur at a flow of approximately 1,611 cfs.

The box culvert will provide an adequate span to facilitate construction of an approximately 26foot wide channel plus one- to two-feet of reconstructed stream bank on each side of the channel which meets the criteria of 1.5 times the D_{100} of the proposed substrate (12") for the stream banks. The culvert will be embedded with waterway bed material to mimic natural substrate. The simulated stream channel will be constructed as a roughened riffle and the downstream scour hole pool will be filled. Rock weirs will be place at the stream tie-in points. Rock clusters will be constructed within the culvert using Class I riprap with a meandering low flow channel. Reconstructed stream banks upstream and downstream from the culvert will consist of woody debris bank reconstruction, vegetated mats, and willow staking. The embankment slopes will be stabilized with Class I riprap to provide erosion protection.

7.1.4 <u>SHER 02</u>

Replacing the 3-foot diameter round culvert at the SHER 02 Goat Camp Road crossing with a low water ford the recommended option for improving fish passage and flood conveyance at the Goat Camp Road crossing.

This replacement option is anticipated to convey the 100-year peak flow of 30.6 cfs and the Q₅₀ of 25.3. The low flow crossing will provide an adequate area of flow through a 5-foot-wide channel, one to two feet deep, with side slopes at 10H:1V that daylight at the existing road surface to accommodate vehicle traffic. The ford channel geometry will mimic the downstream reach, with waterway bed material to mimic natural substrate and provide a wearable driving surface. The embankment slopes will be stabilized with Class I riprap to provide erosion protection. Signage for the low water crossing will be included as appropriate.

7.2 Rejected Alternatives

7.2.1 <u>COP 20</u>

The 12-foot, 11-inch span by 6-foot, 0-inch rise aluminum box culvert embedded 2.6 feet and 13-foot, 3-inch span by 6-foot, 9-inch rise aluminum box culvert embedded 3.3 feet were considered for the crossing but the use of an overflow, floodplain culvert allows for additional flow capacity to reduce the HW/D ratio as well as providing use for the stream diversion. An aluminum structure is recommended over steel due to the lower weight of material, higher corrosion resistance and the potential for faster installation reducing the traffic restrictions on the

Copper River Highway. Pipe arch and round structures were considered but due to the limited available cover over the pipe, both structure shapes were eliminated.

7.2.2 <u>COP 22</u>

The 15-foot, 4-inch span by 6-foot, 5-inch rise aluminum box culvert embedded 1.5 feet and 16foot, 6-inch span by 6-foot, 8-inch rise aluminum box culvert embedded 1.7 feet were considered for the crossing but the use of an overflow, floodplain culvert allows for additional flow capacity to reduce the HW/D ratio as well as providing use for the stream diversion. An aluminum structure is recommended over steel due to the lower weight of material, higher corrosion resistance and the potential for faster installation reducing the traffic restrictions on the Copper River Highway. Pipe arch and round structures were considered but due to the limited available cover over the pipe, both structure shapes were eliminated.

7.2.3 <u>COP 25</u>

An aluminum structure is recommended over steel due to the lower weight of material ,higher corrosion resistance and the potential for faster installation reducing the traffic restrictions on the Copper River Highway. Pipe arch and round structures were considered but due to the limited available cover over the pipe, both structure shapes were eliminated.

8.0 REFERENCES

- Alaska Department of Fish and Game (ADF&G), 2020. *Fish Passage Inventory Database* (*FPID*) - *Inventory and Assessment.* [Online] Available at: http://www.adfg.alaska.gov/index.cfm?adfg=fishpassage.database [Accessed 01 08 2020].
- Clarkin, K., Keller, G., Warhol, T. & Hixson, S., 2006. *Low-Water Crossings: Geomorphic, Biological and Engineering Design Considerations,* Washington D.C.: U.S. Department of Agriculture (USDA), Forest Service, National Technology and Development Program.
- Curran, Janet H., Meyer, David F., & Tasker, Gary D. (2003). "Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada." U.S. Geological Survey Water-Resources Investigations Report 03-4188. Anchorage, Alaska.
- Curran, J.H, N.A. Barth, A.G. Veilleux, R.T. Ourso. 2016. Estimating the Magnitude and Frequency at Gaged and Ungagged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012. U.S. Geological Survey Scientific Investigations Report 2016-5024.
- Department of the Army U.S. Army Corps of Engineers (USACE). *Hydraulic Design of Flood Control Channels.* Engineer Manual (EM) 1110-2-1601, June 1994.
- Forest Service Stream Simulation Working Group, 2008. *Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road Crossings,* San Dimas, CA: U.S. Department of Agriculture (USDA), Forest Service, National Technology and Development Program.

Jones, Stanley H. & Fahl, Charles B. (1994). "Magnitude and Frequency of Floods in Alaska

and Conterminous Basins of Canada." U.S. Geological Survey Water-Resources Investigations Report 93-4179. Anchorage, Alaska.

- Northern Geotechnical Engineering Inc. d.b.a Terra Firma Testing., 2019. Geotechnical Report for USFWS Fish Passage Improvements, Copper River Highway Cordova, Alaska, Anchorage, AK.
- U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), 2007. National Engineering Handbool, Part 654 Stream Restoration Design, Chapter 11: Rosgen Geomorphic Channel Design, Washington D.C.
- United States Department of Agriculture (USDA), Forest Service, 2012. Sign and Poster Guidelines for the Forest Service (EM7100-15), Washington D.C.

APPENDIX A: GEOMORPHIC ANALYSIS

Stream Crossing Site Assessment Reference Reach Data Sheet

DOWL Revised RDP 08212015

Project: (R	WDII	SFWS	cl	ordovic	1PP			Pro	ject N	umber	r:			
Date: 9714	110 0	9251	19	1000	A GAL BRAN	Assessed b	oy: R	oBuck	/ MG	1 pcl	IC	- DI	oul	N/A3/17
Crossing ID.	CODE	10	m		12 Sarad		F	PANICL	NI	DEKK	EN	-0	SEWS	enel Groe
Monthor Co	ditioner		1	12 Bar		110000	-		0	U.U.	1	19		- In this in
weather Cor	nunuons:	500	01	NUC						A.L.			190 W	1
		00	UL.	1007	diment.	I maint /								10
CROSSING C	HARACTE	RISTICS:		2 No. St.	inguo I-	A Start				1	N	,		
Existing Culv	vert/Cross	ing:				REFEREN	CE RE	EACHES	WERE	NOT	FOUN	D. K	ENDREST	EN ATA
	le F	Fast				XS WER	E PO	UND TO	REPrin	SKENI	APA	ECUA	TE CULI	ver
	61	w1	11			SRATIONS	-	_	- 1		-		14.	i i i i i i i i i i i i i i i i i i i
Geomorphol	logy/Strea	am Type/	Bedf	orm Feature	es:									
Baru	er dan	1 100	the	2										
par	t our							in the second second						
Substrate/Bo	ed Mobilit	ty:	• 21	119										
GL	1111-0	tuil	10	lacunt	1 20	-23 A	it							
Char	are v	VI Wash	· L	nahre	NO	10,00								
Floodplain C	haracteris	stics/Entr	ench	ment:	1									
	Will	Flood	lav	e i										
	winte	1 1000 p	· · ·										19 <u>1</u> 7	
Flow/Veloci	ty Estimat	es:			172	(De								
		3 ets	Cu	0.4	to 0.5	473								
Tie-in Points	· · ·	C.A.										1		. 1970
	6										511			
		and the second	Star for								-	and the second	e de la compañía de l	
a second pro-			PEB	BLE COUN	T		Sere k	and the state	PEE	BLE COL	JNT	PEB	BLE COUN	
Site: Co	10 20			Reach:					Reach	US	1.0	Reach:		15
Party: Re	OBVCK/1	MELDCIK	-	Date:		UINT	11 1		Date:	9/25/	19	Date:		
Inches	PARINCÉE	Millimeters	640	XSIGAS	XSZUS	3	TOT #	ITEM % % CUI	<u>1 TOT #</u>	ITEM %	% CUM	TOT #	ITEM % % (CUM
	Silt / Clay	< .062	-2MS	= 10					1-1202					
	Very Fine	.062125	S					- in this is a					1	13
	Fine	.12525	A		ching income	BULK Z							1.	E
	Coorde	.2050	N											S
04 00	Von Corres	.50 - 1.0								1	ç 4		(60
.0408	Very Coarse	1.0 - 2	WYORK			the local design of the second se	U		11				and the second se	60
.0010	A REAL PROPERTY AND A REAL	2.4	60.0X	SI	1				1-1			1		0.0
16 - 22	Fine	2-4		<u>k</u> 11	1									R
.1622	Fine	2 - 4 4 - 5.7 5.7 - 8	G	λ	1 1					-				REN
.1622 .2231 .3144	Fine Fine Medium	2-4 4-5.7 5.7-8 8-11.3	GR	λ 1111 7111 1111	1 1 1/11	· · · ·				· ·				RENCE
.1622 .2231 .3144 .4463	Fine Fine Medium Medium	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16	G R A V	k 1111 1111 1111 1111 1111 1111	и 1 1 1 1									RENCE :
.1622 .2231 .3144 .4463 .6389	Fine Fine Medium Medium Coarse	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6	G R A V E		M4 11 M4, 11 A11 I									RENCE R
.1622 .2231 .3144 .4463 .6389 .89 - 1.26	Fine Fine Medium Coarse Coarse	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32	G R A V E L	<u>к</u> IIII IIII IIII IIII IIII IIII IIII I	1 11 11 11 11 11 11 11 11 11 11 11 11 1									RENCE REL
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77	Fine Fine Medium Medium Coarse Coarse Very Coarse	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45	GRAVEL)	<u>к</u> ин ин ин ин ин ин ин ин ин ин	і і уні ині ні ині ні ині ні	90Y								RENCE RELC
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5	Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64	GRAVEL)	<u>к</u> IIIIII							11.5			RENCE RESCH
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5	Fine Fine Medium Coarse Coarse Very Coarse Very Coarse Small	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90	GRAVEL CO	<u>к</u> IIIIII										RENCE REDCH FIEL
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0	Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Small Small	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128	GRAVEL COBR			99Y1								RENCE RESCH FIELD
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1	Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Small Large	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180		<u>к</u> 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9071								RENCE REDCH FIELD BOC
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1	Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256		<u>к</u> IIIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIIII										RENCE RENCH FIELD BOOK
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3	Fine Fine Fine Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Large Large Small	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 260 - 510		<u>к</u> IIIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIIII	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									RENCE REACH FIELD BOOK
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3 14.3 - 20 20 - 40	Fine Fine Fine Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Large Large Small Small Small	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024			і і ити ити ити ити ити ити ити ити ити									RENCE RESULT BOOK
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3 14.3 - 20 20 - 40 40 - 80	Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small Small Medium Large-Vry Large	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048		<u>к</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIII</u> <u>IIIIIIIIII</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									RENCE REJCH FIELD BOOK
.1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3 14.3 - 20 20 - 40 40 - 80	Fine Fine Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small Small Small Medium Large-Vry Large Bedrock	2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 1024 - 2048												RENCE REACH FIELD BOOK

Stream Crossing Site Assessment

Reference Reach Data Sheet

The state of the state

Date:	CO	0 72		· · ·			Project Nu	umber:	Д	
UPSTREAM	I REFERENC	E REACH:	@ Beaver	Dam. C	Duthet	(NOT RE	Shuhw CR)		
Channel Cr	oss Section	Shape:				Channel SI	ope:			
∆ from	Bankfull	Bankfull	Bed	Floodplain			Channel S	tability Note	es:	
Xing	Width	Depth	Width	Width	Rif	fles				
		<i></i>			Δ Xing	Length	U/s Cross	Section -	200° Long Pro	
4							Down	stream		
E ROM	1 50	qu' to WY	Cat	750			DE Cra	ass sec	- J - J - J	
100	112.50		10 500				01) 010	10' -	1 " Vator depter	
	putlet.	17" topp						10	15" to BI=	
W	st	1.1					Stability:	1 = lowest	(very temporary)	
St. Mather	Kando							5 = highest	(permanent)	
	Pools			Ste	ps		R	ibs	Notes:	
∆ Xing	Length	Depth	∆ Xing	Height	Туре	Stability	Δ Xing	Stability		
12 33	Ser Middle	. 12.5							250 % from	
with a	0								Collect	
Che mg									ini di fim	
VO						~			all office	
CAR ST									Colored	
The second								X		
Vegetation	· W. Now	/ Alder	-							
Bedrock Ob	served:						, ,	•		
	POV	Y.								
DOWNSTRI	EAM REFER	ENCE REAC	H: NONE					1 200	Ti and the second se	
Channel Cr	oss Section	Shape:				Channel Sl	ope:			
Δ from	Bankfull	Bankfull	Bed	Floodplain		1	Channel St	ability Note	s:	
Xing	Width	Depth	Width	Width	Rif	les			3	
1-15					Δ Xing	Length				
						•			N	
	12	640	91	50	97		1.5		2	
		10"	ł	100			•		с.	
			•			2 1	· ·	1		
100			6				Stability:	1 = lowest	(very temporary)	
					54 A.	100		5 = highest	(permanent)	
1.10	Pools			Step	os	0.5	Ri	ibs	Notes:	
∆ Xing	Length	Depth	∆ Xing	Height	Туре	Stability	∆ Xing	Stability		
7	τ.		· · ·		8	and the second				
	2	· .						N.		
		1						1	8	
		r			1			× 1		
						1 .				
Vegetation		1		1	5					
* CBCLALION	•		,			•				
Bedrock Oh	served					Sec. 1				
		7								
DOWL Revised RDP 08212015

IUICUL.	WIND?	TICEM	S A A	MANIA	FR	10		Pro	iect N	umber:	2 10 200	TIL	
Date: 915	Alia	TOTINA	DUN	Value	TIPUL	Assesse	d by: H	(D P	M	1	23.45	13187813.9	
receipe ID.	9002	2-10	MIL	0 0 0 10	10 01	DINAL		DET	26 11		1.0	~ ,	1
	WYL	LIC	YMA	e can	MR GY	OUNIA	and and	Change I	1. 13	L During		1. Salara	7
Veather Cor	nditions:	44°F,	par-	thy clou	ay,	Rayn							
		/	1		0	astrina	_						- I
ROSSING C	HARACTE	RISTICS:	0	d	nigne	a gina							í.
xisting Culv	ert/Cross	sing: (0'	2000	10									1
		<u>.</u>											
Geomorphol	ogy/Stre	am Type/	Bedfo	rm Feature	es: 910	hal ou	FWasi	n, Fift	le/	PODIS, V	16 S	HCPS,	
little.	wood	y det	ins		V				/			. C.Z.	
() [00	1000000							18.1					
ubstrate/Be	ed Mobili	tv:	id.	8	1.1.1		Stops	12.2	1	3-1-24-		elung.	
CIVANEL	cob(0)	05											
000001	CODW	10										.1	
loodplain (haractori	ctics/Entr	onchr	nont	-								
whide 6	na al ol		encin	nent.									
MICO (1	obapi	MEI											
low/Velocit	y Estima	tes:										. A	
4177/2	$\overline{)}$				R. alla			in the second second		and the second			-
ie-in Points	:									•			
									Even			1.	
								· · · · · · · · · · · · · · · · · · ·	0.		1		1.10
1227 112	1000		PEBI	BLE COUN	T				PEE	BBLE COUNT	PEE	BLE COUNT	112
				Reach:					Reach		Date:		
Site:		1		Date:	TOLE C	TAUDE	TOT #	ITEM % % CUM	Date.	1	Date.		
Site: Party:	5 IFMENTANCE	Millimatan	1 1		,		101#		1111 11	ITEM % % CUM	1 TOT #	ITEM % % CU	м
Site: Party: Inches	PARTICLE Sill / Clay	Millimeters	5/3	· X-sec	4		1	THEM TO THE OWN	101#	ITEM % % CUN	<u>1 TOT #</u>	ITEM % % CU	М
Site: Party: Inches	PARTICLE Silt / Clay	<u>Millimeters</u> < .062	5//3	· X-sec	4				101#	ITEM % % CUN	<u>1 TOT #</u>	ITEM % % CU	M
Site: Party: Inches	PARINCLE Silt / Clay Very Fine Fine	<i>Millimeters</i> < .062 .062125 .12525	S/R	· X-sec					101#	ITEM % % CUN	<u>1 TOT #</u>	ITEM % % CU	TH

Inches	PARINGUE	Millimeters		10 130	2	3	TOT #	ITEM %	% CUM	101#	TIEM % % C	UM TO	DI # 11EIVI 70	70 COM	
	Silt / Clay	< .062	S//C	· x-sec			1		17	high					
	Very Fine	.062125	0			-		inner		-					
	Fine	.12525	S												THE
	Medium	.2550	N		1-11-81-2-							8			C
	Coarse	.50 - 1.0	D												NG
.0408	Very Coarse	1.0 - 2													0
.0816	Very Fine	2-4	0000000				1	1							600
.1622	Fine	4 - 5.7	300000												2G
.2231	Fine	5.7 - 8	G												141
.3144	Medium	8 - 11.3	R	MI								3			66
.4463	Medium	11.3 - 16	NV N	UNIX1										-	c
.6389	Coarse	16 - 22.6	E	HIMI			1996								erec.
.89 - 1.26	Coarse	22.6 - 32	副L 原		i didaa	Type		3.95					-	14	Se
1.26 - 1.77	Very Coarse	32 - 45	63633		X										8
1.77 - 2.5	Very Coarse	45 - 64	605000 10-000	HEMINI	-					1					2
2.5 - 3.5	Small	64 - 90	C	KINY		-									L TE
3.5 - 5.0	Small	90 - 128	B	11											E
5.0 - 7.1	Large	128 - 180	BE												00
7.1 - 10.1	Large	180 - 256	EE		1	!					-				CP
10.1 - 14.3	Small	256 - 362	B				-		1.1.						1
14.3 - 20	Small	362 - 512	ŬL												+
20 - 40	Medium	512 - 1024	B				-								
40 - 80	Large-Vry Large	1024 - 2048					1							1	-
	Bedrock		BIDIN		1	l .	Li li		1					1	-

ED JAN UN

*

Reference Reach Data Sheet

ENCE REACH: tion Shape: full Bankfull Depth 194 25" Is th Depth ERENCE REAC	Bed Width 	Floodplain Width >>50' Ste Height	Rif ∆ Xing ps Type	Channel SI fles Length Stability	ope: Channel S Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	es: (very temporary) t (permanent) Notes:
tion Shape: full Bankfull Depth 194 25 b Depth b ERENCE REAC	Bed Width 	Floodplain Width >>>0` Ste Height	Rif ∆ Xing ps Type	Channel SI fles Length Stability	ope: Channel S Stability: A Xing	1 = lowest 5 = highest ibs Stability	es: (very temporary) t (permanent) Notes:
full Bankfull Depth 194 25 "_ s th Depth	Bed Width 	Floodplain Width >>>0` Ste Height	Rif	fles Length Stability	Channel S Stability: A Xing	1 = lowest 5 = highest ibs Stability	es: (very temporary) t (permanent) Notes:
th Depth 194 25 ¹ Is th Depth ERENCE REAC	Width 13'	Width	Rii ∆ Xing ps Type	fles Length Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth		Ste Height	Δ Xing ps Type	Length	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS TO BE A CERTAR CERTAR	- 13' 10-(2' 1NSE 13' Δ Xing	Ste Height	ps Type	Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth FERENCE REAC	- 13' 13' 13' 13' 13' 13' 13' 13' 13' 13' 	>∕50` Ste Height	<mark>ps</mark> Туре	Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth ERENCE REAC	- 13' 10-(2' 1NSE 13" Δ Xing	Ste Height	ps Type	Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth	Δ Xing	750' Ste Height	<mark>ps</mark> Туре	Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth	Δ Xing	750' Ste Height	ps Туре	Stability	Stability: R ∆ Xing	1 = lowest 5 = highest ibs Stability	(very temporary) t (permanent) Notes:
IS th Depth	Δ Xing	Ste Height	ps Type	Stability	R ∆ Xing	5 = highest	t (permanent) Notes:
Is th Depth : :	Δ Xing	Ste Height	ps Type	Stability	R ∆Xing	ibs Stability	Notes:
th Depth	Δ Xing	Height	Type	Stability	Δ Xing	Stability	
: FERENCE REAC	H:						
: FERENCE REAC	H:						
: FERENCE REAC	H:						
: FERENCE REAC	H:		<u>_</u>				
: FERENCE REAC			· · · · · · · · · · · · · · · · · · ·		'. i	1	
: FERENCE REAC	I		· · ·	Ű,		14	
: FERENCE REAC	:H:			- E		14	
: FERENCE REAC	H:		· · · · ·	5			
ERENCE REAC	H:	н н					
FERENCE REAC	H:		· · · · · · · · · · · · · · · · · · ·				
FERENCE REAC	H						
							*
ion Snape:				Channel Si	ope:		
uli Bankfuli	Bed	Floodplain	P'(c 1	Channel St	tability Note	es:
n Deptn	wiath	width	AVing	ries			
~				Length			
				· · · · ·			
э.					1		
		· ·		8			
					Ctobility	1	(
1.1	1 X			15	Stability:	I = IOWest	(very temporary)
	-				D	5 = nignest	(permanent)
b Donth	A Ving	Ster Hoight	Tunc	Stability	A Ving	Ctobility	Notes:
		пеідпі	туре	Stability		Stability	
							1
6			5 st		6		
							L
			La Carta				
	s h Depth	s h Depth ΔXing	s Step h Depth ΔXing Height	s Steps h Depth ΔXing Height Type	s Steps h Depth ΔXing Height Type Stability	S Steps R h Depth Δ Xing Height Type Stability	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

1.4

1

DOWL Revised RDP 08212015

Charles Provestion sing 10:(1) 0.1 sing 10:(1) 0.1 <th>at Osl</th> <th>INDUNC!</th> <th>BAIS 1</th> <th>201</th> <th>doula F</th> <th>20</th> <th>•</th> <th></th> <th></th> <th>Proi</th> <th>oct Nu</th> <th>mber:</th> <th></th> <th>14001</th> <th></th> <th>-</th>	at Osl	INDUNC!	BAIS 1	201	doula F	20	•			Proi	oct Nu	mber:		14001		-
E: HAATEL TH 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	ect:	1Vr/US	IND) (IV.	UUVU F	KILO.		Accessed			IL r	2	1		12-11-1	
SSING CHARACTERISTICS: ather Conditions: 52 ° F Cloudy SSING CHARACTERISTICS: sting Culvert/Crossing: (2) (0' ROWA - pipes installed to control beaver debus strate/Bed Mobility: C Chard - Baver dam doustrean high in vietural nach - low u/s of crimet + durather effects bodplain Characteristics/Entrenchment: Wide Plood plain / low entrenchment Wide Plood plain / low entrenchment Stor: Person: Stor: Sto	a: 9/2	4100	14/1	51	1.7 11/2	up		Assessed	y: K	2MIMIA	tick	-		-		
sather Conditions: 52 ° F CLOUGY OSSING CHARACTERISTICS: sting Culvert/Crossing: (2) (0' RbwMd) - pipes installed to control beover debrus omorphology/Stream Type/Bedform Features: C Chund - Beaver dam doustrea. Strate/Bed Mobility: high in reference read - low v/s of culout + duresheam dry o odplain Characteristics/Entrenchment: Wide Flood plain / low entrenchment Wide Flood plain / low entrenchment State: Person 002:05 No HHI / HHI Wide H	ssing 1D:	COP2	5-18	YN	Me la	LSFT	DY	P		Franklin	Dek	Ker		UL BARRA		11
OSSING CHARACTERISTICS: Siting Culvert/Crossing: (2) (0' QbWM - pipes installed to control beaver debrus omorphology/Stream Type/Bedform Features: C Church - Beaver dam dowstrem. bstrate/Bed Mobility: high in returne reach - low v/s of culrut + draw them dress which in returne reach - low v/s of culrut + draw them dress which in returne reach - low v/s of culrut + draw them dress which chood plain / low cathenethweat w/de flood plain / low cathenethweat w/velocity Estimates: less them 1 fps -in points: PEBBLE COUNT PEBBLE COUN	ather Co	nditions:	52°F	Cl	oudy					1010131						
OSSING CHARACTERISTICS: Isting Culvert/Crossing: (2) (0' Rowth) - pipes installed to control beaver debrus comorphology/Stream Type/Bedform Features: C Chunt - Beaver dam dowstrea. bstrate/Bed Mobility: high in reference mach - low u/s of culrut + down theam dream high in reference mach - low u/s of culrut + down theam dream w/de Pood plain / low entrenchment Wide Pood plain / low entrenchment w/de Pood plain / low entrenchment Beach: party: PEBBLE COUNT PEBBLE	and the	200			0		4	114	1.0		1128/8/	L elga	1. 1.	In Sol	1	
siting Culvert/Crossing: (2) (0' Rowrd - pipes installed to control Deaver deaver omorphology/Stream Type/Bedform Features: C Chand - Baver dam dowstrea. bstrate/Bed Mobility: high in vietnae mach - low v/s of culwrt + dimetheam dime odplain Characteristics/Entrenchment: Wide Dood plain / low entrenchwent w/velocity Estimates: less than 1 fps Stor: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: PBBBLE COUNT Reach: Date: Reach: Date: PBBBLE COUNT Reach: Date: Reach: Date: PBBBLE COUNT Reach: Date: Reach: Date: PBBBLE COUNT Reach: Date: Reach: Reach: Date: Reach: Reac	SSING C	HARACTE	RISTICS:		0	1078		part.		025	1		1.			
omorphology/Stream Type/Bedform Features: C Charuel - Braver dam dousthem bstrate/Bed Mobility: high in returne reach - low v/s of cubut + drug team drug of odplain Characteristics/Entrenchment: Wide Plood plain / low entrenchment / w/Velocity Estimates: less then 1 fps in Points: Sto: Person - low v/s of cubut + drug team drug of Person - low v/s of cubut + drug team drug of w/Velocity Estimates: less then 1 fps in Points: Sto: Person - low v/s of very ready with the drug of very ready of very ready with the drug of very ready with	ting Culv	vert/Cross	ing: (2)	(ϕ)	Round	- 1	pipe	s insta	llet	to contr	ol b	eaver a	Lebv	15		
omorphology/Stream Type/Bedform Features: C Chard - Baver dam donstrem. bstrate/Bed Mobility: high in riethrane reach - low v/s of crimit + donstream dry of the provide the day of the second day of the secon																
C Chantel - Braver dam donstrem bistrate/Bed Mobility: high in reterrae reach - low v/s of crbrt + dona team the so odplain Characteristics/Entrenchment: Wide Bood plain / low entrenchment Wide Bood plain / low entrenchment w/velocity Estimates: less than 1 Fps in Points: PEBBLE COUNT PEBBLE P	marnha	logy/Strop	m Typo/	Bodi	form Fostur	06'				1994.	1		1	2003		-
C Chantel - Beaver dam dowstream bistrate/Bed Mobility: high in reference reach - low u/s of cubert + binding and the stream of the stream o	morpho	iogy/strea	in type/	beui	Ionni reature						\		•		×.,	
bstrate/Bed Mobility: high in vettrane made - low v/s of culout + dimensional disponse didentificational dimensional disponse dimensi dim	C	Chan-	nel -	Bea	ver dam	dows	trea	.								
high in veltrene reach - low u/s of culout + finiteen thus poolplain Characteristics/Entrenchment: Wide Abod plain / low entrenchment w/Velocity Estimates: less then 1 fps 2-in Points: PEBBLE COUNT PEBBLE CO	strate/B	ed Mobilit	y:	. 2	Bull-	1			5.812			-		dað	9 1 3	334
Night in Petermee Naden - 100 Ujs of culled + Grittanker effects Doodplain Characteristics/Entrenchment: Wide Boodplain / low entrenchment Bower effects Dower entrenchment: Dower entrenchme		1	. Sur .	1	111 10	1 13	1923	1	1. 11	LI.	L	1	stea	em	die	7 7
podplain Characteristics/Entrenchment: Wide Plood plain / low entrenchment Wide Plood plain / low entrenchment ww/Velocity Estimates: less than 1 fps PEBBLE COUNT: PEB		hig	NIN N	etw	rma rea	m.		ow v/	5 05	CUIVEN	+	Back	wate	v et	Heu	11
Wide Flood plain / low entrenchment pw/Velocity Estimates: less than 1 Fps s-in Points: PEBBLE COUNT PEBBLE COUNT Pebble Count Pebble Count Pebble Count Pebble Count Pebble Count Pebble Count Peble Count	dplain C	Characteris	tics/Entr	ench	nment:							1.5.8				
Under Flood print / Tow Chiphen Chimited 1 wirder Flood print / Tow Chiphen Chimited 1 best flood print / Tow Chiphen Chimited 1 wirder Flood print / Tow Chiphen Chimited 1 Description / Tow Chiphen Chimited 1 PEBBLE COUNT		1.1-1	CI I.		11	. 1		hant								
Destimates: Jess than 1 fps PEBBLE COUNT <th colspan="</td> <td></td> <td>Wide</td> <td>Flood</td> <td>011</td> <td>n/low</td> <td>chtr</td> <td>encl</td> <td>nimeni</td> <td></td> <td></td> <td></td> <td>1 5 9</td> <td></td> <td>20</td> <td></td> <td></td>		Wide	Flood	011	n/low	chtr	encl	nimeni				1 5 9		20		
PEBBLE COUNT PEBBLE COUNT<	v/Veloci	ty Estimat	es:		V .	GAC	en.		1.1				104			
PEBBLE COUNT PEBBLE COUNT PEBBLE COUNT Site: Reach: Reach: Date: Dat			les	5 -	than 1	rps		4		1 <u>1</u>					- 1	
PEBBLE COUNT PebBLE COUNT<	in Points	5:		11				600								
PEBBLE COUNT PEBBLE COUNT PEBBLE COUNT PEBBLE COUNT PEBBLE COUNT Reach: Reach: Date:																
PEBBLE COUNT PEBBLE COUNT<																
Site: Predact: Pr									2	- -						
Inches Millimeters XS OBST 101E XS TOT # TEM % % CUM TOT # TOT # TEM % % CUM TOT # TOT # TEM % % CUM TOT # <	Alertak			PEF	BBLE COUN	T.	1	ada a tana ang s	-		PEBB	LE COUNT	PEB	BLE CO	DUNT	112
Sill / Clay < 0.62	Site:			PEF	BLE COUN Reach:	T.		nation (1994) Antion (1994) Antion (1994)	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		PEBB Reach: Date:	LE COUNT	PEB Reach: Date:	BLE CO	DUNT	112
Very Fine .002125 S Fine .12525 Medium .2550 N N III IIII III III III III III III IIII IIIII IIIII IIIII IIII IIIII IIIII IIIII IIIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIII IIII IIIII IIIIII IIIIII IIIIII IIIIII	Site: Party: Inches	PARMOLE	Millimeters	PEF	BLE COUN Reach: Date:		59		TOT #	ITEM % % CUM	PEBB Reach: Date: TOT # 1	LE COUNT	PEB Reach: Date: TOT #	BLE CO	OUNT % CUM	112
Fine 125-25 S Medium 25-50 S Coarse 50-10 D Uff 1 Uff 1 Uff 1 16-22 Fine 4-57 G G M// Uff 1 Uff 1 Uff 1 Uff 1 Uff 1 M// Uff 1 Uff 1 Uff 1 Uff 1 Uff 1 31-44 Medium 13-16 G M// Uff 1 Uff 1 Uff 1 Uff 1 83-89 Coarse 12-26 Sa M Uff 1 Uff 1 Uff 1 Uff 1 126-177 Very Coarse 32-64 Uff 1 <thuff 1<="" th=""> <thuff 1<="" th=""> <thuff 1<="" th=""></thuff></thuff></thuff>	Site: Party: Inches	PARTINCLE Silt / Clay	Millimeters < .062	PEF	BLE COUN Reach: Date: メタ 「ひろ」 ちち [」] いち		Z 57 US	11 NT 12 3 55	TOT # XS4	ITEM % % CUM	PEBB Reach: Date: TOT # 1	LE COUNT TEM % % CUM - SSD '	PEB Reach: Date: TOT #	BLE CO	OUNT	112
Medium 25 - 50 N Lat 1 111 111 04 - 08 Very Coarse 10 - 2 Image: Marked Science Sci	Site: Party: Inches	PARMCUE Silt / Clay Very Fine	<u>Millimeters</u> < .062 .062125	PEI ST	BLE COUN Reach: Date: メタ 「ひち」 っち' いち		ZS VS	UNT 5	<u>101 #</u> XS4	птем % % сим НЗ DS и	PEBB Reach: Date: TOT # T	LE COUNT TEM % % CUM - SSD 1	PEB Reach: Date: TOT #	BLE CO	OUNT % CUM	112
Coarse 50 - 1.0 D III IIII IIIII IIIIII IIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Site: Party: Inches	CONTRACTOR Silt / Clay Very Fine Fine	Millimeters < .062 .062125 .12525	PEI SAG	BLE COUN Reach: Date: メタ アルタエ ちち ¹ いち		ZS VS	UNT 5	TOT # XS4	ITEM % % CUM H3 DS U	PEBB Reach: Date: TOT # 1 500	LE COUNT <u>тем % % сим</u> - SSO [°]	PEB Reach: Date: TOT #	BLE CO	OUNT	112. THE
04 - 08 Very Coarse 1.0 - 2 /// // // // // // // // // // // // //	Site: Party: Inches	PAMMCUE Silt / Clay Very Fine Fine Medium	Millimeters < .062 .062125 .12525 .2550	PEI SXC	BLE COUN Reach: Date: S5 POST 55' vs		XS VS	111/1 111/1 111/1 111/1	TOT # XS4	ITEM % % CUM	PEBB Reach: Date: TOT # 1	LE COUNT <i>тем</i> % % сим - SSO '	PEB Reach: Date: TOT #	BLE CO	NUNT	112. THE 9
08 - 16 Very Fine 2 - 4 16 - 22 Fine 4 - 5.7 22 - 31 Fine 5.7 - 8 31 - 44 Medium 8 - 11.3 44 - 6.3 Medium 11.3 - 16 63 - 89 Coarse 16 - 22.6 89 - 1.26 Coarse 16 - 22.6 1.26 - 1.77 Very Coarse 32 - 45 1.26 - 1.77 Very Coarse 32 - 45 1.26 - 1.77 Very Coarse 32 - 45 1.77 - 2.5 Very Coarse 45 - 64 111 UHT UHT 111 UHT UHT 111 112 UHT UHT WHT UHT UHT 111 UHT UHT UHT 111 113 - 16 Very Coarse 32 - 45 112 - 1.77 Very Coarse 32 - 45 11.77 - 2.5 Very Coarse 45 - 64 111 UHT 111 UHT 11 112 UHT 111 UHT 111 113 - 128 Small 64 - 90 3.5 - 5.0 Small 90 - 128 5.0 - 7.1 Large 128 - 632 113 - 14.3 Small 266 - 362 114.3 -	Site: Party: Inches	PARMOUE Sill / Clay Very Fine Fine Medium Coarse	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0	PEF SMR SAND	BBLE COUN Reach: Date: SS'US MII		ZS VS	HNT 55	TOT# XS4	ITEM % % CUM +3 DS v	PEBB Reach: Date: TOT # 1	LE COUNT <i>ТЕМ</i> % % СИМ - SSD	PEB Reach: Date: TOT #	BLE CO	% CUM	112. THE RE.
.1622 Fine 4 - 5.7 Image: Mark Mill	Site: Party: Inches	PARMCUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse	Millimeters < .062	PEF SZC SA N D	BLE COUN Reach: Date: *5 FOST 55' vs		XS VS		TOT # XS4	птем % % сим #3 DS и 	PEBB Reach: Date: TOT # 1	LE COUNT <u>TEM % % CUM</u> - 550 '	PEB Reach: Date: TOT #	BLE CO	SUNT	112 THE REFU
22-31 Fine 5.7-8 G Iff	Site: Party: Inches .0408 .0816	ENAMINATE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Very Fine	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 - 1.0 1.0 - 2 2 - 4	STAR STAR	BLE COUN Reach: Date: %5 TOST 55' v5			UNT3 55 1111 UN1 UN1 UN1 UN1 UN1	<u>107 #</u> XS4	птем % % сим H3 DS и	PEBB Reach: Date: TOT # 1	LE COUNT <u>тем % % сим</u> - SSD [°]	PEB Reach: Date: TOT #	BLE CO	% CUM	112 THE REJE
31 - 44 Medium 8 - 11.3 Image: Constant of the second secon	Site: Party: Inches	PAMMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 -1.0 1.0 - 2 2 - 4 4 - 5.7	PEF SAC	BBLE COUN Reach: Date: 55'05 UM 1 UM 11 UM UM 1 UM UM 1 UM UM 1		ZS US	1212 <u>→</u> (5) 1111 1111 1111 1111	<u>107 #</u>	ITEM % % CUM	PEBB Reach: Date: TOT # T	LE COUNT <u>TEM % % CUM</u> - SSD '	PEB Reach: Date: TOT #	BLE CO	% CUM	112. THE REFERE
.4463 Medium 11.3 - 16 V UM U	Site: Party: Inches .0408 .0816 .1622 .2231	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8		BBLE COUN Reach: Date: <u>%5 POST</u> 55' vs (M1: (M1: (M1: (M1: (M1: (M1: (M1: (M1				107# XS4	ITEM % % CUM	PEBB Reach: Date: TOT # I	LE COUNT TEM % % CUM - SSO '	PEB Reach: Date: TOT #	BLE CO	% CUM	112. THE REJERCM
.6389 Coarse 16 - 22.6 E Image: Mark Mark Mark Mark Mark Mark Mark Mark	Site: Party: Inches .nches .0408 .0816 .1622 .2231 .3144	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Fine Medium	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3	PEI SAC SAND	BLE COUN Reach: Date: <u>S5'05</u> <u>Date:</u> S5'05 <u>Date:</u> S5'05 <u>Date:</u> <u>Date:</u> <u>S5'05</u> <u>UM 1 <u>UM 1</u> <u>UM 1</u></u>				107# XS4	ITEM % % CUM #3 DS v 	PEBBI Reach: Date: TOT # 1 5000	LE COUNT	PEB Reach: Date: TOT #	ITEM %	% CUM	112 THE REJENCE
.89 - 1.26 Coarse 22.6 - 32 L- ////////////////////////////////////	Site: Party: Inches .0408 .0816 .1622 .2231 .3144 .4463	PARMCUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Fine Medium	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16		BLE COUN Reach: Date: %5 TOST 55'05 441 1 95'05 441 1 941 141 441 141 441 141 1 441 141 1 441 141 1				<u>тот #</u> XS4 111 Hf III Hf III	ITEM % % CUM #3 DS v 	PEBB Reach: Date: TOT # 1	LE COUNT	PEB Reach: Date: TOT #	BLE CO	% CUM	112 THE REFERENCE 9
1.26 - 1.77 Very Coarse 32 - 45 I//	Site: Party: Inches .0408 .0816 .1622 .2231 .3144 .4463 .6389	PAMMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Fine Medium Medium Coarse	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 -1.0 1.0 -2 2 -4 4 -5.7 5.7 -8 8 -11.3 11.3 -16 16 - 22.6	PEI SAS SAND GRAVE.	BLE COUN Reach: Date: 55'05 MIII MIII MIIII				<u>тот #</u> Х.S.4 1111 #/f 111 #/f 111 111	ITEM % % CUM 43 DS v 11		LE COUNT <u>TEM % % CUM</u> - SSD '	PEB Reach: Date: TOT #	BLE CO	% CUM	112. THE REFERENCE RE
1.77 - 2.5 Very Coarse 45 - 64 11	Site: Party: Inches Inches	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Fine Medium Medium Coarse Coarse	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 -1.0 1.0 -2 2 -4 4 -5.7 5.7 -8 8 -11.3 11.3 -16 16 - 22.6 22.6 -32	SAND GRAVEL	BLE COUN Reach: Date: %5 POST 55' v5 (M) 1 (M) (M) 1 (M) (M) 1 (M)				111 111 111 111 111 111 111	ITEM % % СИМ 43 DS ~ 11 11 11 11 11 11 11 11 11 11 11 11 11		LE COUNT	PEB Reach: Date: TOT #	BLE CO	% CUM	112. THE REFERENCE REM
2.5 - 3.5 Small 64 - 90 C Image: Signal Sign	Site: Party: Inches Inches 0808 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Medium Medium Medium Coarse Coarse Very Coarse	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45	PEI SAC SAND GRAVEL	BLE COUN Reach: Date: <u>55'05</u> <u>55'05</u> <u>55'05</u> <u>55'05</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u>				107# XS4			LE COUNT	PEB Reach: Date: TOT #	BLE CO	% CUM	112 THE REFERENCE RELEA
3.5 - 5.0 Small 90 - 128 B Image: Small Signature 90 - 128 Image: Small Signature Imag	Site: Party: Inches Inches 0.0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64	PEI SAND GRAVEL	BLE COUN Reach: Date: 55'05 441' 441' 441' 441' 441' 441' 441' 441			111/ 11/ 111/	107# XS4			LE COUNT	PEB Reach: Date: TOT #	BLE CO	SUNT	112. THE REFERENCE REACHER F
5.0 - 7.1 Large 128 - 180 Image: Constraint of the second s	Site: Party: Inches Inches 0.0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5	PARMACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Medium Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90	PEI SAS SAND GRAVEL	BLE COUN Reach: Date: 55'05 MI MI MI MI MI MI MI MI MI MI MI MI MI			111/ 11/ 111/	<u>тот #</u> Х.S.4 1111 #Г 111 #Г 111 111			LE COUNT TEM % % CUM - SSD '	PEB Reach: Date: TOT #	BLE CO	2UNT	112 THE REFERENCE REACH FIELD
7.1 - 10.1 Large 180 - 256 Active 10.1 - 14.3 Small 256 - 362 B 14.3 - 20 Small 362 - 512 20 - 40 Medium 512 - 1024 40 - 80 Large-Vry Large 1024 - 2048 Bedrock BDUKK	Site: Party: Inches Inches	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Medium Medium Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Small	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128	SAND GRAVEL COBB	BLE COUN Reach: Date: %5 POST 55'05				111 111 111 111 111 111			LE COUNT	PEB Reach: Date: TOT #	BLE CO	20000000000000000000000000000000000000	112. THE REFERENCE RELEY FIELD E
10.1 - 14.3 Small 200 - 302 14.3 - 20 Small 362 - 512 20 - 40 Medium 512 - 1024 40 - 80 Large-Vry Large 1024 - 2048 Bedrock HULLER	Site: Party: Inches Inches 0808 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Medium Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small	Millimeters <.062	PEI SAL SALD GRAVEL COBBLE	BLE COUN Reach: Date: <u>55'05</u> <u>55'05</u> <u>55'05</u> <u>55'05</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u> <u>100</u>				107# XS4			LE COUNT	PEB Reach: Date: TOT #	BLE CO	2000 % CUM	112. THE REFERENCE RELEY FIELD BOO
20 - 40 Medium 512 - 1024 Image: Viry Large 1024 - 2048 Image: Viry Large	Site: Party: Inches Inches 08 - 16 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256	PEI SKI SARD GRAVEL COBBLU	BLE COUN Reach: Date: <u>55'05</u> <u>55'05</u> <u>55'05</u> <u>1000000000000000000000000000000000000</u>				тот # Х.S.4 1111 111 111 111 111 111			LE COUNT	PEB Reach: Date: TOT #	ITEM %	2UNT	112 THE REFERENCE REACH FIELD BOOK
40 - 80 Large-Vry Large 1024 - 2048 5 Bedrock	Site: Party: Inches Inches 0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3	PARMACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small	Millimeters < .062 .062 .125 .125 .25 .25 .50 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512	SAND GRAVEL COBBLE	BLE COUN Reach: Date: 55'05 441 1 441 141 441 141 441 4			111 111 111 111 111 111 111 111	<u>тот #</u> XS4				PEB Reach: Date: TOT #	BLE CO	2UNT	112. THE REFERENCE RESULT BOOK
Bedrock	Site: Party: Inches Inches 0.0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3 14.3 - 20 20 - 40	PARMACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Large Large Small Small Small	Millimeters < .062		BLE COUN Reach: Date: 55'05 MII MIII MI MIII MI			1212 1 55 11111 11111 11111 11111 111111	107# XS4			LE COUNT TEM % % CUM - SSO '	PEB Reach: Date: TOT #	BLE CO	2UNT	112. THE REFERENCE RESULT FIELD BOOK
	Site: Party: Inches Inches 08 - 08 08 - 16 .16 - 22 .22 - 31 .31 - 44 .44 - 63 .63 - 89 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1 7.1 - 10.1 10.1 - 14.3 14.3 - 20 20 - 40 40 - 80	PARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small Small Small	Millimeters <.062		BLE COUN Reach: Date: <u>%5 POST</u> 55' vs				111 111 111 111 111 111 111			LE COUNT	PEB Reach: Date: TOT #	BLE CO	2UNT	112. THE REFERENCE REACHEN FIELD BOOK

50rvey-4001 d/5

Reference Reach Data Sheet

X32

151

Date:	anulie	7					Project Nu	mhor	
UPSTREAN	1 REFERENC	E REACH:	FLAG/16D F	got SURVA	4	· · · ·	IFTOJECT NU	IIIDEI.	
Channel Cr	oss Section	Shape:	1 -1.0220 1	00.		Channel SI	ope:		
∆from	Bankfull	Bankfull	Bed	Floodplain			Channel St	ability Note	S:
Xing	Width	Depth	Width	Width	Ri	fles		/ / /	
155 0/5 Ret	2:31(24)	2'-5"	WS JGi	>50	∆ Xing	Length	Ups	man bea	ver dam -
tel as Rif	(23)	QJA7	W5@13"				brole	nout -	meandwing c
53 00 100	3-20	2"-1"	231	750'			- diver	rel	in the second
1900 L	an ma	2'-11"	27'	2501		2104	CVU.		
W LARD	21-21			100		20			5 pd 1
Spring	D = I	1.2"	251	> 5721			Stability:	1 = lowest	(very temporary)
V	X9.	1 * 9	L)	7 50			3	5 = highest	(permanent)
1.10	Pools			Ste	ps		Ri	bs	Notes:
∆ Xing	Length	Depth	Δ Xing	Height	Туре	Stability /	Δ Xing	Stability	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								·
,	201								
	20	311							
, - · ·									
		,						/	
/egetation		1	0.4						
	AL	DEN/SI	MUCR	×					
Bedrock Ok	AL oserved:	DER/ S/ None	MUCR						-
Bedrock Ob	Doserved:	DER/SP None ENCE REAC	H:						-
Bedrock Ob DOWNSTRI	AL oserved: EAM REFER oss Section	DER / 9/ None ENCE REAC Shape:)/LuCA H:			Channel Sl	ope:		-
Bedrock Ob DOWNSTRI Channel Cro Δ from	EAM REFER oss Section Bankfull	DER / 9/ None ENCE REAC Shape: Bankfull	H: Bed	Floodplain		Channel Sl	ope: Channel St	ability Note	s:
Bedrock Of DOWNSTRI Channel Cro Δ from Xing	EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width	Rif	Channel Sl	ope: Channel St	ability Note	s:
Bedrock Ob DOWNSTRI Channel Cro ∆ from Xing	EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width	Rif ∆ Xing	Channel Sl fles Length	ope: Channel St	ability Note	s:
Bedrock Of DOWNSTRI Channel Cro Δ from Xing	EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth)/WCA H: Bed Width	Floodplain Width	Rif ∆ Xing	Channel Slo fles Length	ope: Channel St	ability Note	s:
Bedrock Ol DOWNSTRI Channel Cr A from Xing	EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width 〉 ちつ	Rif ∆ Xing	Channel Sl fles Length	ope: Channel St	ability Note	s:
Bedrock Ol DOWNSTRI Channel Cr A from Xing	EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width > 50	Rif ∆ Xing	Channel Sl fles Length	ope: Channel St	ability Note	s:
Bedrock Ol DOWNSTRI Channel Cr A from Xing	AL oserved: EAM REFER oss Section Bankfull Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width 〉 くて	Rif ∆ Xing	Channel Sl fles Length	ope: Channel St	ability Note	S:
Bedrock Ol DOWNSTRI Channel Cr A from Xing	AL oserved: EAM REFER oss Section Bankfull ^y Width	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width ≻50	Rif <u>A</u> Xing	Channel Sl fles Length	ope: Channel St Stability:	ability Note	s: very temporary)
Bedrock Ol DOWNSTRI Channel Cr A from Xing	AU oserved: EAM REFER oss Section Bankfull Width 34 34	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width	Floodplain Width	Rif ∆ Xing	Channel Sl fles Length	ope: Channel St Stability: Bi	1 = lowest (5 = highest	s: very temporary) (permanent)
Bedrock Ol DOWNSTRI Channel Cr Δ from Xing	EAM REFER oss Section Bankfull Width 34 Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width 3 3	Floodplain Width >50 Ste Height	Rif ∆Xing ps Tvpe	Channel Sl fles Length	ope: Channel St Stability: Ri ∆ Xing	ability Note 1 = lowest 5 = highest bs Stability	s: very temporary) (permanent) Notes:
Bedrock Ol DOWNSTRI Channel Cr Δ from Xing	AU oserved: EAM REFER oss Section Bankfull Width 34 Bankfull Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width 33	Floodplain Width > 50 Ste Height	Rif ∆ Xing ps Type	Channel Sl fles Length Stability	ope: Channel St Stability: Ri ∆ Xing	1 = lowest (5 = highest 5 Stability	s: very temporary) (permanent) Notes:
Bedrock Ol DOWNSTRI Channel Cr Δ from Xing	EAM REFER oss Section Bankfull Width 34 Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth	H: Bed Width 3 3	Floodplain Width >50 Ste Height	Rif ∆Xing ps Type	Channel Sl fles Length Stability	ope: Channel St Stability: Ri ∆ Xing	ability Note 1 = lowest (5 = highest bs Stability	s: very temporary) (permanent) Notes:
Bedrock Ol DOWNSTRI Channel Cr Δ from Xing	AU oserved: EAM REFER oss Section Bankfull Width 34 Bankfull Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth /-4" Depth	H: Bed Width 33	Floodplain Width	Rif ∆ Xing ps Type	Channel Sl fles Length Stability	ope: Channel St Stability: Ri ∆ Xing	1 = lowest (5 = highest bs Stability	s: very temporary) (permanent) Notes:
Bedrock Ol DOWNSTRI Channel Cr A from Xing	AU oserved: EAM REFER oss Section Bankfull Width 34 Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth I'-U" Depth Barkfull	H: Bed Width 3-3	Floodplain Width > 50 Ste Height	Rif ∆ Xing ps Type	Channel Sl fles Length Stability	ope: Channel St Stability: Ri Δ Xing	ability Note 1 = lowest (5 = highest bs Stability	s: very temporary) (permanent) Notes:
Bedrock Ol DOWNSTRI Channel Cr A from Xing //550 ¹	AU oserved: EAM REFER oss Section Bankfull Width 34 Pools Length	DER / 9/ None ENCE REAC Shape: Bankfull Depth J'-4" Depth J'1"	H: Bed Width 33	Floodplain Width > 50 Ste Height	Rif ∆ Xing ps Type	Channel Sl fles Length Stability	ope: Channel St Stability: Ri ∆ Xing	1 = lowest (5 = highest bs Stability	s: very temporary) (permanent) Notes:

Bedrock Observed:

DOWL Revised RDP 08212015

Reference Reach Data Sheet

Revised RDP 08212015

DOWL

	KWP I	NPPer	NIV	AN IVI	1 1 1		110 /							
Date:	9/24/1	9 9 9	25	119	1	Assesse	d by: H	RABM	MERA	nki	nO	ext	er	1903
rossing ID:	SUDI	07	00		note lann	n:(3)	Ň		·	00			100	
Voathor Cor	ditions: (Voi ad.	10	O°F.	in the second		1 BIS	Pienon	c	11. 14	2	11126	11	Lint
veather con		journ	15	NF					apply t		•			
	HARACTE	RISTICS:)		disn	Yana I te	A Ís							
victing Culv	ort/Cross	ing.			> Paimi	n 6 and	andon	1 cins	SINU			- 1 1		1.75
Aisting Cuiv	ert/cross	ing.	-	-	sperm	ove gn	ana	TONUS	OIV IEF					
	3" C	olverl												
aomornhol	logy/Stres	m Type/	Rodf	orm Featu	Ires.	*						5		
eomorpho	iogy/strea	ani iype/	beur	onnreatt		`								
0	Netland	l												
ubstrate /P	od Mobili			210								A.C.		
ubstrate/B		Ly:		1										
3" of 1	reanics	over	- 9	vore										
loodalain C	haractaria	tics /Ent-	onch	mont					051	1. /	5	40 1		9
loodplain C	naracteris	stics/entr	encn	iment:			_		2,5 6	acta	r P	VON		
TUDE	7 Lo	w Pla	w	nette	and	-	Dowst	ream P	Caver T	Jam	-3	foot	- Hon	m
1990	2		5								91		g	/P
low/Velocit	ty Estimat	es:												
	and in the													×
in in Deinte														
ie-in Points														
re-in Points	1. 197					٠.					10			11.70
ie-in Points					8	×.			0	л	1		02.0	1.10
		(14.500) (14.500)	PEB	BLE COL	JNT				PEBBLE C	OUNT	PEBE	BLE COU	NT 112	
Site:			PEB	BLE COL Reach:	JNT				PEBBLE Co Reach:	OUNT	PEBE Reach: Date:	BLE COU	NT 112	
Site: Party:	EMIGRAVIE	Millimators	PEB	BLE COU Reach: Date:	JNT	דאתםס	TOT #	ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT 112 % CUM	
Site: Party: Inches	PARMOLE Sill / Clay	Millimeters < .062	PEB	BBLE COU Reach: Date: US90 ^{IIPAE}	JNT RTICLE		<u>TOT #</u>	ITEM % % CUM	PEBBLE C Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT 112 % CUM	
Site: Party: Inches	PARMOLE Sill / Clay Very Fine	<i>Millimeters</i> <.062 .062125	PEB	BLE COU Reach: Date: VS90 ¹⁷			TOT #	ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT % % CUM	PEBE Reach: Date: TOT #	BLE COU	NT 12 % CUM	
Site: Party: Inches	MARMACUE Sill / Clay Very Fine Fine	Millimeters < .062 .062125 .12525	PEB SMC	BLE COL Reach: Date: VS90 ¹⁷			<u> </u>	ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT 112 % CUM	1. 10 1. 10
Site: Party: Inches	PARMOLE Silt / Clay Very Fine Fine Medium	Millimeters < .062 .062125 .12525 .2550	PEB STR	BLE COU Reach: Date: US90124F	JNT RTICLE		<u>TOT #</u>	ITEM % % СИМ	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT 112 THE C	
Site: Party: Inches	PARMCUE Silt / Clay Very Fine Fine Medium Coarse	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0		BLE COU Reach: Date: US90 ^{III} A F			<i>TOT #</i>	ITEM % % CUM	PEBBLE C Reach: Date: TOT # ITEM 9	OUNT % % CUM	PEBE Reach: Date: TOT #	ITEM % 9	NT THE 500	200
Site: Party: Inches	PARMOLE Silt / Clay Very Fine Fine Medium Coarse Very Coarse	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2	PEB SIAC	BLE COU Reach: Date: US90125F			<u>TOT #</u>	ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT % % CUM	PEBE Reach: Date: TOT #	BLE COU	NT CUM	00000
Site: Party: Inches	PARMICUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4		BBLE COU Reach: Date: US9012 F			TOT #	ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT THE SUGSOUS	10 2 10 2 C
Site: Party: Inches	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine	Millimeters < .062	PEB SAC SA N D	BBLE COU Reach: Date: US90 ^{III} A F			TOT #	ITEM % % CUM	PEBBLE C Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT 112 THE SUGSTOSION	\$ 66 \$ D \$ C
.0408 .0816 .1622 .2231	PARMACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine	Millimeters <.062 .062125 .12525 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8		BLE COU Reach: Date: US90"~ F			<i>TOT #</i>	ITEM % % CUM	PEBBLE C Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	SLE COU	NT 112 THE SUGSTOURN C	DV & CO & D & C
.0408 .0816 .1622 .2231 .3144	PARMOUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Fine Medium	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3	PEB SIG SA N D SGRA	BLE COU Reach: Date: US9012 F				ITEM % % CUM	PEBBLE Co Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	SLE COU	NT UM THE SUCCOUSANT OF	5.00% 8.00 2.D. 8.00
Site: Party: Inches .0408 .0816 .1622 .2231 .3144 .4463	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Fine Medium Medium	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16		BBLE COU Reach: Date: US90 ¹¹ ~ F				ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	BLE COU	NT THE SUCONCULOU OF OUR	B & BN & B & B & B & B & B & B & B & B &
0408 .0816 .1622 .2231 .3144 .4463 .6389	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Fine Medium Medium Coarse	Millimeters < .062 .062125 .12525 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.8	PEB SAC SAND GRAVEL	BLE COU Reach: Date: US90 ^{III} F			TOT #	ITEM % % CUM	PEBBLE C	OUNT	PEBE Reach: Date: TOT #	SLE COU	NT THE SWOJEOUWY CO DWW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26	EXAMPACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Fine Fine Fine Medium Medium Coarse Coarse	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 23 . 45		BLE COU Reach: Date: US90 ¹⁷ F				ITEM % % CUM	PEBBLE C	OUNT	PEBE Reach: Date: TOT #	ITEM % 3	NT 112 THE SHOWCONCON CO ONCOME	わちょう うわく ういく うい うう しょう
	EXAMPOLIE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64		BLE COU Reach: Date: US9012 F				ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	SLE COU	NT THE SUG SUCUL OF SUCULOUS	m.DV. & & & DV & CO & D & C & C & C & C & C & C & C & C & C
0408 .0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 .25 - 25	PARMCUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Fine Fine Medium Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse	Millimeters < .062 .062125 .12525 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 .64 - 90	PEB SAR SAND GRAVEL	BLE COU Reach: Date: US90 ^{III} F				ITEM % % CUM	PEBBLE C	OUNT	PEBE Reach: Date: TOT #	SLE COU	NT THE SWOJEOUVER COL FIL	M. M. & CON & CON & CO & TO & CO
0408 .0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 .35 - 5.0	PARMACLE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 .64 - 90 90 - 128	SAND GRAVEL COR	BLE COU Reach: Date: US90" - F				ITEM % % CUM	PEBBLE C	OUNT	PEBE Reach: Date: TOT #	SLE COU		a true he DV & D & DV & C & D & C & C & C & C & C & C & C & C
.0408 .0408 .0816 .1622 .2231 .3144 .4463 .6389 .89 - 1.26 1.26 - 1.77 1.77 - 2.5 2.5 - 3.5 3.5 - 5.0 5.0 - 7.1	FINARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Fine Fine Medium Coarse Very Coarse Small Small Large	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180	PEB SAC SAND GRAVEL	BLE COU Reach: Date: US901 F				ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE Reach: Date: TOT #	SLE COU		a time the the Sour Sour Source of the
	EMARINOLIE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large	Millimeters < .062	PEB SAND GRAVEL COBBLE	BLE COU Reach: Date: US901 F				ITEM % % CUM	PEBBLE CO Reach: Date: TOT # ITEM 9	OUNT	PEBE	SLE COU	NT 112 THE SWO STOSMON GO SWOW FILL DOCK	ADD THE WOR SON SON SOSTOS O
	E MARMACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small	Millimeters < .062	PEB SAND GRAVEL COBBLE	BLE COU Reach: Date: US90"PAF					PEBBLE C	OUNT	PEBE	SLE COU	NT THE SWOJE OU SHOW OU STELL	ADD UNDER SON SON SOST SO
	PARMACUE Sill / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Small Small	Millimeters <.062	PEB SAZD GRAVEL COBBLE BOLL	BLE COU Reach: Date: US90" - F 				ITEM % % CUM	PEBBLE C	OUNT	PEBE			AND LITT MANY OU SUN SUST SU
	EXAMPACUE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Very Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small Small Small	Millimeters <.062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024		BLE COU Reach: Date: US901 ~ F				ITEM % % CUM	PEBBLE C	OUNT	PEBE			TOT THE WOR SON SON SO SON SO SON
	EMARINOLIE Silt / Clay Very Fine Fine Medium Coarse Very Coarse Very Coarse Very Coarse Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Large Large Small Small Medium Large-Vry Large Bedrock	Millimeters < .062 .062125 .12525 .2550 .50 - 1.0 1.0 - 2 2 - 4 4 - 5.7 5.7 - 8 8 - 11.3 11.3 - 16 16 - 22.6 22.6 - 32 32 - 45 45 - 64 64 - 90 90 - 128 128 - 180 180 - 256 256 - 362 362 - 512 512 - 1024 102 - 2048	PEB SAC SAND GRAVEL COBBLE BOOLDER	BLE COU Reach: Date: US901 ~ F					PEBBLE C	OUNT	PEBE	SLE COU		ACCE LINE MANY SO SON SON SOS SO

Reference Reach Data Sheet

Date:	9/24 +	9/25					Project N	umber:	
UPSTREAM	1 REFERENC	E REACH:	NONE	Section	1 talan	275' 1	pstream		
Channel Cr	oss Section	Shape:		2,8		Channel S	lope:		
Δ from	Bankfull	Bankfull	Bed	Floodplain		2	Channel S	Stability Not	es:
Xing	Width	Depth	Width	Width	Rif	fles	R. U.L.	11 + co hu	markal
2					Δ Xing	Length	pankin	1 Jean	a price per
901	5 '	1011	1' - "	2501			psire	in	
10	5	10	7 7	150					
					1. 1.				
							Stability:	1 = lowest	(very temporary)
							· · ·	5 = highest	t (permanent)
	Pools			Ste	ps		F	Ribs	Notes:
∆ Xing	Length	Depth	Δ Xing	Height	Туре	Stability	Δ Xing	Stability	
1						,	, j		
4					A A				
1					2				
								÷	
									10 A
Vegetation	:							1. A.	
Bedrock Ok	oserved:		4						
	<i>*</i> .								
DOWNSTR	EAM REFER	ENCE REACH	1:						A
Channel Cr	oss Section	Shape:				Channel Sl	ope:		
Δ from	Bankfull	Bankfull	Bed	Floodplain			Channel S	tability Note	26.
Xing	Width	Depth	Width	Width	Riff	les			
Ũ				2 C	ΔXing	Length			а. — Я.
					B	Longen			
					5. 				×
	а" <u>р</u>								
			•				Stability:	1 = lowest	(very temporary)
\sim $^{\circ}$	~		**				Stability.	5 = highest	(nermanent)
	Pools			Ster	05		R	ihs	Notes:
ΔXing	Length	Depth	Λ Xing	Height	Type	Stability	Λ Xing	Stability	Notes.
	Longen	Deptil	47.118	- Height	турс	Stability		Stability	
				A.	8			 	· ,
			, <u>^</u>						5 10
					91 -				с. —
0									· · · · · ·
Vegetation	I						I		
- Securion									
Bedrock Ob	served								
Scalock OD	SCI YCU.								

18 mile camparound - COP 22 - now patterns impacted connected Desneann & ds · OLLE UPSKEEUM. avoundwater loss @ sites - MOW UP @ MUS VISIT precip./ Klashy systems - Materalls UP UPSMPann, Mouss over FS Road municipal next pipe west

- KIVSA SAUS MIS ONE WAS MAN VELOCITIES causing as scour note

do we want to excapate sed wedge -> vom xe-avaana, remaing -> use material winder weaged with as supstrate - manye

Wirsh Wuld perience still be a long COMINE down, blowouts, etc

more adammente podate allament	COP 25 I
a cordination	(2) 8' or (e'
-> reep mase search Fishing, hunty	peaner gi
-> design vehicles	->aut.
-> Road closures	-ds entle
·DOT NO MOVE MAN 36 NOUNS OF	* Fala
ets mile Recommendation	- WWWW 6
me eyedpond = gravel pir	- Neny MI
foad a 40ss I devid end	
tug stopes in mind for valsing Road	- MOVECOVE
ot wanks apple the induit pipup tout	- PERVOCE V
ANK STADING AND ALLAN LAMEN	-spawni
	- edge ok

nul V< mile to VAPI Round ATTADO an an - thanspipe. PIPES mos CICSH PICHTU 11/1 (Flood) 2UK navs

east may stack pord east may stack pord teep connections

left bank sta Pank

> icing, freezing XASK RODDY dead

all

COP 20	18 mile west (DH4
US- open Man -> Rapid	y autuality succession	
-water was	rage area	oe all
Summer - undersized		
-not large a - remagner	ainage basm v chelk opstear	
-less meezing	Weld to varise Road	
L>300-500	Road survey	

SHER OF Recently maintained, placed approximate why mis is being aone withis project aone withis project approximate indications approximate property Remore prope when -> Freezes, people ameaning

Verp ice conditions in mind

-no snow remaral on goat camp had

- prevent people mondriving avound

get (survey) fiftle enwations

BEN OFF Q2 Nows to know Ford midth

call neveriles here

- pressive transciller in mis pond (mi - well established because pond - all wetland

NOTES BOX CUMPLET - MILET Moose Meadow - Mile 20 Mayoe look @ Sher 1, Cop 9 x det in touch w/ Dot MyO (Robby) beaner grates callsing dams, FP issues xdiaital alobe imagent * Sher 2 WSE Shots no discussion sner 02 - wetland DS beaver dam - waist height = 1208e COP25

COP 25 TO DO LISE

- (2) Peb. courts US -> @ Magged Ref. really
- (1) Peb court DS -> @ good cross section Page
- May limits of survey upstream
- Mag limits or tell willie 400° downsmean
- Surrey
- Double energy Reach : BEN, BE depth, 1000
- tie in pts.
- Photos
- -Doundream side aitm (eas
- sher 02 to to Uist
- Pep count Reffle
- Maa AV QUILLY

- COP 22 TO DO LIST
- Peoble counts upsical
 - X REF. Reach Upstram (1055 section
- DP2010DOUST 250 USEDS SUMELY
- pepple count us
- OPSTONS FOR DOT
- KANG ISSNES
- WANTEN S
- Road grading, Maunten and
 - 2000 USENS ICHOSINES / design vehicle

-	CDP 16) upsha ann	suncy	info	For WILLIE
lud	250	topo (sume	n) elage	yeal U.	pstream/
2m-121	(2) X	FW/Depth - Sections			US .
8/25 80	10hox Wanzy	1 Ndival	profile 1)s m	SM Adaging
	01055	Sechon 2	A 2-		DO RYOM
05:20	Sver C	5 ENAGED	US: XSECI	u (top	
12:20	- Roadi	way hag	ed 200-50	0	
2187	6/25 COP 22	1100 - 200 pm	VIELL PVIC	a d	
	- NS : 6 - NXS (an 350		, Lain	INS OF
		XSection	Con 350		
-	BY BY Y	P topo (surre Ray take 3	AC HAUGE		

2: q grane SUR PS OF 490' US OF STUA FREE Realm Co

033-37 -> denance as 1

Dt

APPENDIX B: SUBSTRATE DESIGN

New Stream Channel Design (Culvert, Rock Ramp) - COP 20

Using Corps of Engineers Equations - FHV FHWA NHI 01-004; River Engineering for I http://www.fhwa.dot.gov/engineering/hydra YELLOW ARE INPUTS Safety Factor Stability Coefficient for Incipient Failure Vertical Velocity Distribution Coeff Blanket Thickness Coeff Local depth of flow Unit Weight of rock Local depth of rock Local depth-average velocity Side Slope correction factor Gravitational Acceleration D85/D15 D50/D30 Note: This method is based on the minimu Riprap Design Method - Selecting Proper O Design Hydrology and Sedimentology for S	VA Circular on D Highway Encroad ulics/library arc. 1.5 0.3 1.00 1 2 62.4 165 4.3774 1 32.2 5 2 ym D30 size Gradation, Page Small Catchment	evelopment in the chments, 2001 cfm?pub_number= (0.36 round rock, (1.0 for straight cl (1xD100 or 1.5 or ft for 100 year evelo b/ft*3 b/ft*3 ft/s from 100-year ft/s*2 (1.7-5.2) 131. s, Haan, Barfield a	River System - Pa 88.6120 0.3 angular rock) hannels) r D50 max, whiche ent assumed r event avg. veloc nd Hayes, 1981.	ge 6.25. ever is greate	or)	Approximate de for outlet velocit	pth average flow ies
D15 D30 D50 D85 D100 Using D50 size, used FHWA circular for Ri D100 = 2.0D50	0.1 0.1 0.2 0.3 0.4	ft ft ft ft ft spec out D100, D8	1.0 2.0 3.0 4.0 5.0	inches inches inches inches inches			
Fuller-Thompson Estimating for Maxim	um Density: Stream Simula	tion Guidelines	D100 (inches)	12.0		Stability (D30):	OK
Method Adapted Holl 03 Polest Service	e Stream Simula	luon Guidennes	D30 Reg'd	2.0		Stability (D30).	
YELLOW ARE INPUTS			COARS		L		FINES
		Type IV Rip Rap	Type III Rip Rap	Type II Rip	Type I Rip R	FA	Combined % F-T EQN
	RELATIVE % =	0	0	0.0000	0.5500	0.4500	1.0000
Size (inches)	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing % Passing
54	54 in	1.00	1.00	1.00	1.00	1.00	100% 212%
48	48 in	0.90	1.00	1.00	1.00	1.00	100% 200%
34	34 in	0.50	1.00	1.00	1.00	1.00	100% 168%
30	30 in	0.35	0.90	1.00	1.00	1.00	100% 158%
24	24 III 20 in	0.25	0.50	1.00	1.00	1.00	
16	20 in 16 in	0.15	0.13	0.90	1.00	1.00	100% 125%
12	12 in	0.00	0.00	0.00	1.00	1.00	100% 100%
10	10 in	0.00	0.00	0.00	0.90	1.00	95% 91%
8	8 in	0.00	0.00	0.00	0.50	1.00	73% 82%
5	5 in	0.00	0.00	0.00	0.20	1.00	56% 65%
3	3 in	0.00	0.00	0.00	0.10	1.00	51% 50%
1	1 in	0.00	0.00	0.00	0.00	0.65	29% 29%
0.75	0.75 in	0.00	0.00	0.00	0.00	0.50	23% 25%
0.187	#4	0.00	0.00	0.00	0.00	0.25	11% 12%
0.0787	#10 Sand	0.00	0.00	0.00	0.00	0.15 FA: Porous Bac	7% 8% kfill

Gradation values should be within +/-5% of this gradation (Rice) AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for G	ranh & Fuller-Thoms	n Fan
Size (in)	Combined % pa F-1	equation
54.000	100%	212%
48.000	100%	200%
34.000	100%	168%
30.000	100%	158%
24.000	100%	141%
20.000	100%	129%
16.000	100%	115%
12.000	100%	100%
10.000	95%	91%
8.000	73%	82%
5.000	56%	65%
3.000	51%	50%
1.000	29%	29%
0.750	23%	25%
0.187	11%	12%
0.079	7%	8%

New Stream Channel Design (Culvert, Rock Ramp) - COP 22

Using Corps of Engineers Equations - FHV FHWA NHI 01-004; River Engineering for http://www.fhwa.dot.gov/engineering/hydra	WA Circular on D Highway Encroad aulics/library arc.	evelopment in the chments, 2001 cfm?pub_number	River System	- Page	6.25.				
YELLOW ARE INPUTS		-							
Safety Factor	1.5								
Stability Coefficient for Incipient Failure	0.3	(0.36 round rock	., 0.3 angular ro	ock)					
Vertical Velocity Distribution Coeff	1.00	(1.0 for straight of	channels)						
Blanket Thickness Coeff	1	(1xD100 or 1.5 c	or D50 max, wh	icheve	r is greate	r)			
Local depth of flow	2.65	ft for 100 year ev	vent						
Unit Weight of water	62.4	lb/ft^3	assumed						
Unit weight of rock	165	lb/ft^3	assumed						
Local depth-average velocity	6.2952	ft/s from 100-yea	ar event avg. ve	elocity i	in pipe		Approximate de	epth-average flow	v
Side Slope correction factor	1						for outlet veloci	ties	
Gravitational Acceleration	32.2	ft/s^2							
D85/D15	5	(1.7-5.2)							
D50/D30	2								
Note: This method is based on the minimu	um D30 size								
Riprap Design Method - Selecting Proper C Design Hydrology and Sedimentology for S	Gradation, Page Small Catchment	131. s, Haan, Barfield a	and Hayes, 198	81.					
D15	0.2	ft	3.0	in	ches				
D10	0.2	ft	3.0	ind	ches				
D50	0.2	ft	6.0	ind	ches				
D85	, 0.4 5 0.7	ft	9.0	ind	ches				
D100	0.7	ft	11.0	ind	ches				
D100 = 2.0D50 Fuller-Thompson Estimating for Maxim	um Density:		D100 (inches)	<mark>12.0</mark>				
Method Adapted from US Forest Service	e Stream Simula	tion Guidelines	D30		5.0		Stability (D30):	0	νK
			D30 Regid		3.0			FINEO	
YELLOW ARE INPUTS				ARSE		L Trans a L Dim Dr		FINES	E T FON
		Туре ї кір кар		ар ту			0.4500		
Cine (inches)	RELATIVE % =	% Possing		0/	Dessing	2 Passing	0.4300	% Passing	% Passing
Size (inches)	Sieve Size	/0 F assiriy	/0 Fassing	/0	r assiriy			70 Fassing	/0 Fassing
04 49	04 III 49 in	1.00		1.00	1.00	1.00	1.00	100%	212%
48	48 in 24 in	0.90		1.00	1.00	1.00	1.00	100%	200%
34	34 In 20 in	0.50		00	1.00	1.00	1.00	100%	108%
30	30 III 24 in	0.3		5.90	1.00	1.00	1.00	100%	1.1.0/
24	24 11	0.23		1.50	1.00	1.00	1.00	100%	141%
20	20 III 16 in	0.1		0.15	0.90	1.00	1.00	100%	129%
10	10 III 12 in	0.00		00.00	0.50	1.00	1.00	100%	100%
12	1∠ III 10 in	0.00		0.00	0.10	1.00	1.00	0.5%	010/
0	l U III Q in	0.00		0.00	0.00	0.90	1.00	90% 70%	91/0 820/
0 5	0 III 5 in	0.00		00.00	0.00	0.50	1.00	73% FC%	0270 65%
ວ ຈ	0 III 0 in	0.00		00	0.00	0.20	1.00	510%	50%
J	1 in	0.00		0.00	0.00	0.10	1.00	200/	20%
0.75	0.75 in	0.00		0.00	0.00	0.00	0.65	29%	23/0
0.75	U.75111 #A	0.00		00	0.00	0.00	0.50	∠3% 110/	2070
0.107	#4 #10 Sand	0.00) (00	0.00	0.00	0.23	70/	12 /0 80/_
0.0101	#10 Janu	0.00	· · · ·		0.00	0.00	EA: Porous Ba	ckfill	0 /0

Gradation values should be within +/-5% of this gradation (Rice) AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for C	ranh & Fullor Thomas	n Ean
Size (in)	Combined % pa E T	
	Combined % par-1	equation
54.000	100%	212%
48.000	100%	200%
34.000	100%	168%
30.000	100%	158%
24.000	100%	141%
20.000	100%	129%
16.000	100%	115%
12.000	100%	100%
10.000	95%	91%
8.000	73%	82%
5.000	56%	65%
3.000	51%	50%
1.000	29%	29%
0.750	23%	25%
0.187	11%	12%
0.079	7%	8%

New Stream Channel Design (Culvert, Rock Ramp) - COP 25

Using Corps of Engineers Equations - FHV FHWA NHI 01-004; River Engineering for http://www.fhwa.dot.gov/engineering/hydra	VA Circular on D Highway Encroad Julics/library arc.	evelopment in the l chments, 2001 cfm?pub_number=	River System - Pa <u>8&id=20</u>	ge 6.25.				
YELLOW ARE INPUTS		-						
Safety Factor	1.5							
Stability Coefficient for Incipient Failure	0.3	(0.36 round rock,	0.3 angular rock)					
Vertical Velocity Distribution Coeff	1.00	(1.0 for straight cl	hannels)					
Blanket Thickness Coeff	1	(1xD100 or 1.5 oi	r D50 max, whiche	ever is greate	er)			
Local depth of flow	4.6	ft for 100 year even	ent					
Unit Weight of water	62.4	lb/ft^3	assumed					
Unit weight of rock	165	lb/ft^3	assumed					
Local depth-average velocity	5.6502	ft/s from 100-yea	r event avg. veloci	ity in pipe		Approximate de	pth-average flow	
Side Slope correction factor	1					for outlet velocit	ies	
Gravitational Acceleration	32.2	ft/s^2						
D85/D15	5	(1.7-5.2)						
D50/D30	2							
Note: This method is based on the minimu	um D30 size							
Riprap Design Method - Selecting Proper (Design Hydrology and Sedimentology for S	Gradation, Page Small Catchment	131. s, Haan, Barfield ai	nd Hayes, 1981.					
D15	0.1	ft	2.0	inches				
D30	0.2	ft	2.0	inches				
D50	0.3	ft	4.0	inches				
D85	0.5	ft	6.0	inches				
D100	0.6	ft	7.0	inches				
D100 = 2.0D50 Fuller-Thompson Estimating for Maximu	um Density:		D100 (inches)	12.0		l 		
Method Adapted from US Forest Service	e Stream Simula	tion Guidelines	D30	5.0		Stability (D30):	OK	
			D30 Req'd	2.0				
YELLOW ARE INPUTS			CUARS		L Turne I Din D			
			Туре III Кір Кар			FA 0.4500		
	RELATIVE % =	0 V Deceing	0 % Deceipe	0.0000	0.5500	0.4300		
Size (inches)	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing		J
04 40	54 In 49 in	1.00	1.00	1.00	1.00	1.00	100% 212%	
48	48 in	0.90	1.00	1.00	1.00	1.00	100% 200%	
34	34 IN 20 in	0.50	1.00	1.00	1.00	1.00	100% 168%	
30	30 IN 24 in	0.35	0.90	1.00	1.00	1.00		
24	24 III 20 in	0.25	0.50	1.00	1.00	1.00		
20	20 III 16 in	0.15	0.15	0.90	1.00	1.00	100% 129%	
10	10 III 12 in	0.00	0.00	0.50	1.00	1.00	100% 115%	
12	12 III 10 in	0.00	0.00	0.15	1.00	1.00		
0		0.00	0.00	0.00	0.90	1.00	90% 91% 730/ 000/	
0 5	0 II I 5 in	0.00	0.00	0.00	0.50	1.00	1370 82% 560/ 650/	
ບ ຈ	3 in	0.00	0.00	0.00	0.20	1.00		
3		0.00	0.00	0.00	0.10	1.00		
0.75	0.75 in	0.00	0.00	0.00	0.00	0.65	23/0 23%	
0.187	0.75111 	0.00	0.00	0.00	0.00	0.50	20/0 20/0	
0.0787	http://www.and	0.00	0.00	0.00	0.00	0.25	7% 8%	
0.0707	#10 Galla	0.00	0.00	0.00	0.00	FA: Porous Bac	kfill	

Gradation values should be within +/-5% of this gradation (Rice) AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for Graph & Fuller-Thomson Eqn								
Size (in)	Combined % pa F-T e	equation						
54.000	100%	212%						
48.000	100%	200%						
34.000	100%	168%						
30.000	100%	158%						
24.000	100%	141%						
20.000	100%	129%						
16.000	100%	115%						
12.000	100%	100%						
10.000	95%	91%						
8.000	73%	82%						
5.000	56%	65%						
3.000	51%	50%						
1.000	29%	29%						
0.750	23%	25%						
0.187	11%	12%						
0.079	7%	8%						

New Stream Channel Design (Culvert, Rock Ramp) - SHER02

Using Corps of Engineers Equations - FHWA Circular on Development in the River System - Page 6.25.								
FHWA NHI 01-004; River Engineering for Highway Encroachments, 2001								
http://www.fhwa.dot.gov/engineering/hydra	ulics/library_arc	cfm?pub_number=8&id=20						
YELLOW ARE INPUTS								
Safety Factor	1.5							
Stability Coefficient for Incipient Failure	0.3	(0.36 round rock, 0.3 angular rock)						
Vertical Velocity Distribution Coeff	1.00	(1.0 for straight channels)						
Blanket Thickness Coeff	1	(1xD100 or 1.5 or D50 max, whichever is greater)						
Local depth of flow	0.63	ft for 100 year event						
Unit Weight of water	62.4	lb/ft^3 assumed						
Unit weight of rock	165	lb/ft^3 assumed						
Local depth-average velocity	4.36	ft/s from 100-year event avg. velocity in pipe						
Side Slope correction factor	1							
Gravitational Acceleration	32.2	ft/s^2						
D85/D15	5	(1.7-5.2)						
D50/D30	2							
Note: This method is based on the minimu	ım D30 size							
Riprap Design Method - Selecting Proper C	Gradation, Page	9 131.						
Design Hydrology and Sedimentology for S	Small Catchmer	nts, Haan, Barfield and Hayes, 1981.						
D15	0.1	ft 2.0 inches						
D30	0.1	ft 2.0 inches						
D50	0.2	ft 3.0 inches						
D85	0.4	ft 5.0 inches						
D100	0.5	ft 6.0 inches						
Using D50 size, used FHWA circular for Ri	p Rap design to	o spec out D100, D85 and D15.						
D100 = 2.0D50								
Fuller-Thompson Estimating for Maxim	um Density:	D100 (inches) 120						
Fuller-Inompson Estimating for Maximum Density: D100 (inches)								

Method Adapted from US Forest Service Stream Simulation Guidelines D30

-								
			D30 Req'd	2.0				
YELLOW ARE INPUTS			COARS	SE MATERIA	\L		FINES	
		Type IV Rip Rap	Type III Rip Rap	Type II Rip	Type I Rip R	FA	Combined %	F-T EQN
	RELATIVE % =	0	0	0.0000	0.5000	0.5000	1.0000	
Size (inches)	Sieve Size	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing	% Passing
54	54 in	1.00	1.00	1.00	1.00	1.00	100%	212%
48	48 in	0.90	1.00	1.00	1.00	1.00	100%	200%
34	34 in	0.50	1.00	1.00	1.00	1.00	100%	168%
30	30 in	0.35	0.90	1.00	1.00	1.00	100%	158%
24	24 in	0.25	0.50	1.00	1.00	1.00	100%	141%
20	20 in	0.15	0.15	0.90	1.00	1.00	100%	129%
16	16 in	0.00	0.00	0.50	1.00	1.00	100%	115%
12	12 in	0.00	0.00	0.15	1.00	1.00	100%	100%
10	10 in	0.00	0.00	0.00	0.90	1.00	95%	91%
8	8 in	0.00	0.00	0.00	0.50	1.00	75%	82%
5	5 in	0.00	0.00	0.00	0.20	1.00	60%	65%
3	3 in	0.00	0.00	0.00	0.10	1.00	55%	50%
1	1 in	0.00	0.00	0.00	0.00	0.65	33%	29%
0.75	0.75 in	0.00	0.00	0.00	0.00	0.50	25%	25%
0.187	#4	0.00	0.00	0.00	0.00	0.25	13%	12%
0.0787	#10 Sand	0.00	0.00	0.00	0.00	0.15	8%	8%
						FA: Porous Bac	kfill	

5.0

Stability (D30):

Gradation values should be within +/-5% of this gradation (Rice) AND we need to have at least 5% sand size (#10) or smaller (Forest Service) in the combined gradation

DATA for Graph & Fuller-Thomson Eqn								
Size (in)	Combined % pa F-T e	quation						
54.000	100%	212%						
48.000	100%	200%						
34.000	100%	168%						
30.000	100%	158%						
24.000	100%	141%						
20.000	100%	129%						
16.000	100%	115%						
12.000	100%	100%						
10.000	95%	91%						
8.000	75%	82%						
5.000	60%	65%						
3.000	55%	50%						
1.000	33%	29%						
0.750	25%	25%						
0.187	13%	12%						
0.079	8%	8%						

OK

APPENDIX C: HYDROLOGIC ANALYSIS

Cordova Hydrology - SHER 02								
Percent chance exceedance	Recurrance interval	Q/A to USFWS Analysis COP 25 (cfs)	2016 Regression (cfs)	2003 Regression (cfs)				
50	2	9.1	5.9	14.0				
20	5	10.3	10.8	19.0				
10	10	11.1	14.8	22.4				
4	25	11.9	20.6	26.6				
2	50	12.4	25.3	29.7				
1	100	12.9	30.6	32.7				
0.5	200	13.4	36.1	35.8				
0.2	500	-	44.1	39.8				

	Cordova Hydrology - COP 20									
Percent chance exceedance	Recurrance interval	Percent increase with March Flows for COP 25 (cfs)	COP 20 Flow Measurements Correlation to USGS Gauge Discharge (cfs)	2016 Regression (cfs)	2003 Regression (cfs)					
50	2	148	128	68	82					
20	5	171	144	111	109					
10	10	182	152	143	127					
4	25	196	161	188	151					
2	50	205	168	222	168					
1	100	214	174	260	185					
0.5	200	221	179	299	203					
0.2	500	-	-	353	226					

Cordova Hydrology - Cop 22									
Percent chance exceedance	Recurrance interval	COP 22 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements (2013- 2019) (cfs)COP 22 Flow Measurements Correlation to USGS Gauge Discharge (cfs)2016 Regressi (cfs)		2016 Regression (cfs)	2003 Regression (cfs)				
50	2	319	691	210	189				
20	5	355	773	321	248				
10	10	375	819	404	288				
4	25	398	871	514	340				
2	50	413	905	598	380				
1	100	427	938	690	418				
0.5	200	440	968	783	459				
0.2	500	-	-	911	512				

Cordova Hydrology - Cop 25									
Percent chance exceedance	Recurrance interval	COP 25 Gauge Correlation to USGS Gauge 8 Peak Flow Measurements (2013- 2019) (cfs)	COP 25 Flow Measurements Correlation to USGS Gauge Discharge (cfs)	2016 Regression (cfs)	2003 Regression (cfs)				
50	2	705	962	305	294				
20	5	801	1075	454	388				
10	10	857	1139	564	452				
4	25	919	1210	709	533				
2	50	962	1258	819	595				
1	100	1002	1302	940	654				
0.5	200	1040	1344	1060	717				
0.2	500	-	-	1230	799				

Summary of Hydrology Data Collected for Cop 20, 22 & 25 3/20/2020 Franklin Dekker, USFWS

Between 9/5/2018 to 11/22/2019, USFWS and Copper River Watershed Project collected discharge measurements at sites COP 20, 22 and 25 and two local pressure transducer gages recorded stage at COP 22 and 25 between 9/4/2018 and 9/25/2019 (Table 1). This data summary report includes tentative peak streamflow estimates. All correlations used for stage-discharge relationships and synthetic records with the USGS gage are tentative and will improve with future flow measurements and gage data. Between 6 & 8 flow measurements were used for correlations. The USGS gaged used with the Glacier River Trib Near Cordova # 15215900.

Table 1. Flow Measurements from 18 Mile sites and gage data available for analysis. The largest and smallest measured flows are shown in bold for each site.

	Discharge	Discharge	Discharge	COP 22		USGS
	Measurement	Measurement	Measurement	Gage	COP 25 Gage	Gage Q
Site	Date	Time	(ft³/s)	Height (ft)	Height (ft)	(ft³/s)
COP20	9/5/2018	16:34	3.0		2.12	6.2
COP20	10/10/2018	14:17	7.1		2.36	4.7
COP20	12/17/2018	15:45	8.6		2.58	23.0
COP20	12/18/2018	11:30	5.3		2.40	15.6
COP20	7/10/2019	12:09	1.6	1.41	2.07	7.0
COP20	8/22/2019	14:17	0.8	1.37	2.04	1.7
COP20	9/13/2019	16:16	7.1	1.51	2.36	22.3
COP20	9/25/2019	7:58	3.0		2.36	25.0
COP20	11/22/2019	9:52	20.7			59.8
COP22	9/5/2018	15:48	6.9			6.2
COP22	10/10/2018	13:41	7.0			4.4
COP22	12/10/2018	15:00	11.3			17.5
COP22	3/19/2019	8:17	61.4	2.23		40.5
COP22	7/2/2019	16:30	9.0	1.45		12.0
COP22	7/10/2019	10:17	9.0	1.41		7.2
COP22	8/21/2019	14:00	6.4	1.37		1.6
COP22	9/13/2019	11:28	30.5	1.63		18.5
COP22	9/25/2019	10:43	10.7	1.68		22.7
COP22	10/11/2019	11:35	77.1	2.34		59.0
COP22	11/14/2019	14:15	39.1	2.20		16.5
COP22	11/22/2019	11:14	114.7	2.77		58.6
COP25	9/5/2018	14:35	5.5		2.12	6.4
COP25	10/10/2018	13:09	11.8		2.27	4.0
COP25	12/10/2018	14:00	23.7		2.42	17.8
COP25	3/17/2019	18:57	186.7		3.59	64.6
COP25	3/17/2019	16:00	125.7		3.26	40.5
COP25	7/10/2019	11:31	6.9		2.06	7.0
COP25	8/21/2019	14:49	5.0		2.03	1.6
COP25	9/13/2019	12:50	83.1		2.51	17.8
COP25	10/11/2019	12:40	92.6			53.8
COP25	11/14/2019	15:11	42.0			15.6
COP25	11/22/2019	12:45	94.7			58.6

Peak flow Estimates

Peak flow estimates were based on correlations to the USGS Gage's 8 peak flow measurements (2013 - 2019). The local gage discharge records were used to correlate to the USGS Gage in the case of COP22 and COP25, but for COP20 which did not have local gage, flow measurements were correlated directly to the USGS gage. Peak flows calculated from those correlations were entered into a Log Pearson Type III Distribution with weighted regional skew values from Curran et al. 2016 to determine flood frequency estimates. These peak flow estimates should be evaluated in conjunction with other available methods, such as the regional regression equations. The COP20 and COP22 sites appear like they would benefit from addition flow measurements at larger flows to improve correlations.

Table 2. Peak Flow Estimates based on correlation to USGS Gage's 8 peak flow measurements (2013 - 2019). COP20 measured discharge was used for correlations while local gage records were used in the case of COP22 and COP25.

RI	COP20 (cfs)	COP22 (cfs)	COP25 (cfs)	
2	128	319	705	
5	144	355	801	
10	152	375	857	
25	162	398	919	
50	0 168 413		962	
100	174	427	1002	
200	180 440		1040	

Figure 1. Mean monthly discharge from 2013- 2020 calculated from synthetic record with USGS gage.

Figure 2. Mean daily discharge from 2013 – 2020 calculated from synthetic record with USGS gage.

Figure 3. Discharge measurements to local gage relationships for local gage discharge records.

[Type here]

Figure 4. Correlations to USGS gage used to create 2013- 2020 synthetic record.

UPDATE 4/22/2020

Correlations to the USGS Gage for another Flood Frequency estimate that uses all possible flow measurements taken at 18 Mile sites.

Figure 5. Correlations of 18 Mile site discharge measurements to USGS Gage discharge.

Table 3. Flood frequency estimates derived from USGS Glacier River Trib Gage using curves that related
18mile flow measurements to USGS gage discharge.

	COP20 COP22		COP25	
RI	(cfs)	(cfs)	(cfs)	
2	128	691	962	
5	144	773	1,075	
10	152	819	1,139	
25	161	871	1,210	
50	168	905	1,258	
100	174	938	1,302	
200	179	968	1,344	

What if 2 large March 2019 events are removed from the COP25 Rating Curve? Table 4. COP25 flood frequency with and without March flows in rating curve.

RI	COP25 Q With March flows (cfs)	COP25 Q without March flows (cfs)	with March / without March
2	705	606	116%
5	801	676	119%
10	857	715	120%
25	919	759	121%
50	962	789	122%
100	1002	816	123%
200	1040	842	123%

References

Curran, J.H., Barth, N.A., Veilleux, A.G., and Ourso, R.T., 2016, Estimating flood magnitude and frequency at gaged and ungaged sites on streams in Alaska and conterminous basins in Canada, based on data through water year 2012: U.S. Geological Survey Scientific Investigations Report 2016–5024, 47 p., <u>http://dx.doi.org/10.3133/sir20165024</u>.

USGS. Glacier River Trib Near Cordova # 15215900. url: https://waterdata.usgs.gov/nwis/uv/?site no=15215900

[Type here]

Flood-frequency applications tool for use on unregulated streams in Alaska and conte This spreadsheet computes the regression estimate of the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent ch exceedance flows for an unregulated stream in Alaska or conterminous basins in Canada. The spreadsh includes the 90 percent prediction intervals, the minus and plus standard error of prediction intervals, a average standard error of prediction. To use the spreadsheet, enter requested information in the yellow below.

Enter a site-description name:

Cop 20 - Cordova, AK

Enter the explanatory variables:

Drainage area, in square miles	DRNAREA	0.54	Equations are valid for DRNAREA between 0.4 and
Mean annual precipitation from 1971-2000 PRISM data, in inches	PRECPRIS00	108.3169291	inches, and for DRNAREA greater than 1,000 and less than 31,100 mi ² with PRECPRIS00 between 10 and 111 inches.
data, in inches Warnings regarding rar	nge of variables:		

Results:

Percent chance exceedance	Percent chance exceedance flow, in ft ³ /s	Lower limit of 90 percent prediction interval flow, in ft ³ /s	Upper limit of 90 percent prediction interval flow, in ft ³ /s	-SEP _{P,i} (percent)	+SEP _P ,i (percent)	Average SEP _{P,i} (percent)
50	68.0	23.7	196	-47.3	89.6	71.1
20	111	39.3	311	-46.6	87.3	69.5
10	143	50.8	403	-46.6	87.3	69.5
4	188	65.2	540	-47.3	89.8	71.3
2	222	75.5	653	-48.0	92.2	73.0
1	260	86.8	781	-48.6	94.6	74.7
0.5	299	96.4	928	-49.7	98.6	77.6
0.2	353	108	1,150	-51.2	104.9	82.0

Notes

Differences in rounding of equation parameters can produce minor differences between the results obtained using the regression equations in table 7 and using WREG software. The estimates in this spreadsheet use the regression equations as published in table 7. The regression estimates for streamgages shown in table 4 were computed using WREG during the regression analysis.
Flood-frequency applications tool for use on unregulated streams in Alaska and conte This spreadsheet computes the regression estimate of the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent ch exceedance flows for an unregulated stream in Alaska or conterminous basins in Canada. The spreadsh includes the 90 percent prediction intervals, the minus and plus standard error of prediction intervals, a average standard error of prediction. To use the spreadsheet, enter requested information in the yellow below.

Enter a site-description name:

Cop 22 - Cordova, AK

Enter the explanatory variables:

Drainage area, in square miles	DRNAREA	1.89	Equations are valid for DRNAREA between 0.4 and
Mean annual precipitation from 1971-2000 PRISM data, in inches	PRECPRIS00	116.8807087	inches, and for DRNAREA greater than 1,000 and less than 31,100 mi ² with PRECPRIS00 between 10 and 111 inches.
Warnings regarding ra	nge of variables:		

Results:

Percent chance exceedance	Percent chance exceedance flow, in ft ³ /s	Lower limit of 90 percent prediction interval flow, in ft ³ /s	Upper limit of 90 percent prediction interval flow, in ft ³ /s	-SEP _{P,i} (percent)	+SEP _P ,i (percent)	Average SEP _{P,i} (percent)
50	210	73.1	601	-47.2	89.4	71.0
20	321	114	902	-46.5	87.0	69.3
10	404	144	1,130	-46.5	87.1	69.3
4	514	179	1,480	-47.2	89.5	71.0
2	598	204	1,750	-47.9	91.9	72.8
1	690	231	2,070	-48.5	94.3	74.5
0.5	783	253	2,420	-49.6	98.3	77.3
0.2	911	280	2,970	-51.1	104.5	81.7

Notes

Differences in rounding of equation parameters can produce minor differences between the results obtained using the regression equations in table 7 and using WREG software. The estimates in this spreadsheet use the regression equations as published in table 7. The regression estimates for streamgages shown in table 4 were computed using WREG during the regression analysis.

Flood-frequency applications tool for use on unregulated streams in Alaska and conte This spreadsheet computes the regression estimate of the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent ct exceedance flows for an unregulated stream in Alaska or conterminous basins in Canada. The spreadst includes the 90 percent prediction intervals, the minus and plus standard error of prediction intervals, a average standard error of prediction. To use the spreadsheet, enter requested information in the yellow below.

Enter a site-description name:

Cop 25 - Cordova, AK

Enter the explanatory variables:

Drainage area, in square miles	DRNAREA	2.48	Equations are valid for DRNAREA between 0.4 and
Mean annual precipitation from 1971-2000 PRISM data, in inches	PRECPRISOO	134 8784449	inches, and for DRNAREA greater than 1,000 and less than 31,100 mi ² with PRECPRIS00 between 10 and 111 inches.
Warnings regarding ra	nge of variables:		

Results:

Percent chance exceedance	Percent chance exceedance flow, in ft ³ /s	Lower limit of 90 percent prediction interval flow, in ft ³ /s	Upper limit of 90 percent prediction interval flow, in ft ³ /s	-SEP _{P,i} (percent)	+SEP _{P,i} (percent)	Average SEP _{P,i} (percent)
50	305	106	874	-47.2	89.4	71.0
20	454	162	1,280	-46.5	87.0	69.3
10	564	201	1,590	-46.5	87.1	69.3
4	709	247	2,040	-47.2	89.5	71.0
2	819	279	2,400	-47.9	91.9	72.8
1	940	314	2,810	-48.5	94.3	74.5
0.5	1,060	343	3,280	-49.6	98.3	77.3
0.2	1,230	377	3,990	-51.1	104.5	81.7

Notes

Differences in rounding of equation parameters can produce minor differences between the results obtained using the regression equations in table 7 and using WREG software. The estimates in this spreadsheet use the regression equations as published in table 7. The regression estimates for streamgages shown in table 4 were computed using WREG during the regression analysis.

Flood-frequency applications tool for use on unregulated streams in Alaska and conte This spreadsheet computes the regression estimate of the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent ct exceedance flows for an unregulated stream in Alaska or conterminous basins in Canada. The spreadst includes the 90 percent prediction intervals, the minus and plus standard error of prediction intervals, a average standard error of prediction. To use the spreadsheet, enter requested information in the yellow below.

Enter a site-description name:

Sher 2 - Cordova, AK

Enter the explanatory variables:

Drainage area, in square miles	DRNAREA	0.03	Equations are valid for DRNAREA between 0.4 and
Mean annual precipitation from 1971-2000 PRISM data, in inches	PRECPRIS00	104.7783465	inches, and for DRNAREA greater than 1,000 and less than 31,100 mi ² with PRECPRIS00 between 10 and 111 inches.
Warnings regarding ra	nge of variables:		
WARNING: DRAINAG UNKNOWN.	E AREA IS NOT	WITHIN APPL	ICABLE RANGE. ACCURACY OF ESTIMATES ARE

Results:

Percent chance exceedance	Percent chance exceedance flow, in ft ³ /s	Lower limit of 90 percent prediction interval flow, in ft ³ /s	Upper limit of 90 percent prediction interval flow, in ft ³ /s	-SEP _{P,i} (percent)	+SEP _P ,i (percent)	Average SEP _{P,i} (percent)
50	5.9	2.0	17.0	-47.6	90.7	71.9
20	10.8	3.8	30.6	-46.9	88.3	70.2
10	14.8	5.2	42.1	-46.9	88.4	70.3
4	20.6	7.1	59.9	-47.6	91.0	72.1
2	25.3	8.5	75.0	-48.3	93.5	73.9
1	30.6	10.1	92.8	-49.0	95.9	75.6
0.5	36.1	11.5	113	-50.0	100.0	78.5
0.2	44.1	13.3	146	-51.5	106.4	83.1

Notes

Differences in rounding of equation parameters can produce minor differences between the results obtained using the regression equations in table 7 and using WREG software. The estimates in this spreadsheet use the regression equations as published in table 7. The regression estimates for streamgages shown in table 4 were computed using WREG during the regression analysis.

Table 3. R	legression e	quations for es	timating 2-,	5-, 10-, 25-, 50-,	100-, 200-, a	nd 500-year peak s	streamflows for unreg	gulated streams in R	egions 1-7, Alaska	and	
conternin	ious pasiris										
IO- T-vea	r neak stream	flow in cubic fe	et ner secon	d. A drainage a	rea in square	miles: ST area of I	akes and ponds (stora	(ae) in percent: P me	an annual precipitati	on in	
inches; J,	mean minimu	m January temp	perature, in d	egrees Fahrenh	eit; E, elevatio	n, in feet; F, area of	forest, in percent]	go), in poloon, r , mo			
Enter a si	te-descriptio	n name:									
С	op 20 - Cordo	ova, AK									
		Exponent for	Exponent	Exponent for	Exponent	Average standard error of prediction (log	Average standard error of prediction	Average equivalent	Estimate of rec interval Q_T usin	urrence g user-	
	Constant	Α	for ST	Р	for J	units)	(percent)	years of record	supplied charac	teristics	
									User: Enter values shaded area for thi: (9999 indicates a d value that must be	in s region ummy replaced)	
		Region 1, Re	gion 3 (93 ga	aging stations)					A=	0.54	
		Applica	ble range of	/ariables:					ST=	5	
		A: 0.720-571;	ST: 0-26; P:	70-300; J: 0-32					P=	180	
									J=	16	
Q2	0.004119	0.8361	-0.3590	0.9110	1.635	0.158	38	0.88	82.238		
Q5	0.009024	0.8322	-0.3670	0.8128	1.640	0.156	37	1.3	109.003		
Q10	0.01450	0.8306	-0.3691	0.7655	1.622	0.157	37	1.8	127.427		
Q25	0.02522	0.8292	-0.3697	0.7165	1.588	0.161	38	2.4	150.618		
Q50	0.03711	0.8286	-0.3693	0.6847	1.559	0.166	40	2.8	168.121		
Q100	0.05364	0.8281	-0.3683	0.6556	1.527	0.171	41	3.1	184.971		
Q200	0.07658	0.8276	-0.3669	0.6284	1.495	0.178	43	3.4	203.147		
Q500	0.1209	0.8272	-0.3646	0.5948	1.449	0.188	45	3.6	226.414		

Table 3. F contermi	Regression e nous basins i	quations for es in Canada	stimating 2-,	5-, 10-, 25-, 50-,	, 100-, 200-, a	nd 500-year peak s	streamflows for unreg	julated streams in R	egions 1-7, Alaska a	and	
[Q _T , T-yea inches; J,	ar peak stream mean minimu	nflow, in cubic fe m January temp	eet per secon perature, in de	d; A, drainage a egrees Fahrenh	rea, in square eit; E, elevatic	miles; ST, area of I n, in feet; F, area of	akes and ponds (stora forest, in percent]	ge), in percent; P, mea	an annual precipitatio	on, in	
Enter a si	te-descriptio	n name:		Enter a site-de	escription na	me:					
С	op 22 - Cordo	wa, AK		Co	op 22 - Cordov	va, AK					
	Constant	Exponent for A	Exponent for ST	Exponent for P	Exponent for J	Average standard error of prediction (log units)	Average standard error of prediction (percent)	Average equivalent years of record	Estimate of recu interval Q _T using supplied charact	urrence g user- eristics	
									User: Enter values shaded area for this (9999 indicates a duvalue that must be r	in s region ummy replaced)	
		Region 1, Re	gion 3 (93 ga	aging stations)					A=	1.89	
		Applica	ble range of v	/ariables:					ST=	10	
		A: 0.720-571;	ST: 0-26; P:	70-300; J: 0-32					P=	180	1
									J=	16	1
Q2	0.004119	0.8361	-0.3590	0.9110	1.635	0.158	38	0.88	188.566		
Q5	0.009024	0.8322	-0.3670	0.8128	1.640	0.156	37	1.3	247.514		
Q10	0.01450	0.8306	-0.3691	0.7655	1.622	0.157	37	1.8	288.405		1
Q25	0.02522	0.8292	-0.3697	0.7165	1.588	0.161	38	2.4	340.172		
Q50	0.03711	0.8286	-0.3693	0.6847	1.559	0.166	40	2.8	379.508		
Q100	0.05364	0.8281	-0.3683	0.6556	1.527	0.171	41	3.1	417.536		
Q200	0.07658	0.8276	-0.3669	0.6284	1.495	0.178	43	3.4	458.667		
Q500	0.1209	0.8272	-0.3646	0.5948	1.449	0.188	45	3.6	511.656		
											1

Table 3. F	legression e	quations for es	stimating 2-,	5-, 10-, 25-, 50-,	, 100-, 200-, a	nd 500-year peak s	streamflows for unreg	gulated streams in Ro	egions 1-7, Alaska	and	
contermi	ious basins i	n Canada									
	r poak stroam	flow in cubic fo	ot por socon	d: A drainago a		miles: ST area of I	akas and pands (stora	(a) in porcont: P mo	an annual procinitati	on in	
inches; J,	mean minimu	m January temp	perature, in de	egrees Fahrenh	eit; E, elevatio	n, in feet; F, area of	forest, in percent]	ge), in percent, r , mea	an annual precipitati	011, 111	
Enter a si	te-descriptio	n name:									
С	op 25 - Cordo	va, AK									
		Exponent for	Exponent	Exponent for	Exponent	Average standard error of prediction (log	Average standard error of prediction	Average equivalent	Estimate of rec interval Q _T usin	urrence g user-	
	Constant	- A	for ST	P	for J	units)	(percent)	years of record	supplied charac	teristics	
									User: Enter values shaded area for this (9999 indicates a d value that must be	in s region ummy replaced)	
		Region 1, Re	gion 3 (93 ga	aging stations)					A=	2.48	
		Applica	ble range of v	/ariables:					ST=	5	
		A: 0.720-571;	ST: 0-26; P:	70-300; J: 0-32					P=	180	
									J=	16	
Q2	0.004119	0.8361	-0.3590	0.9110	1.635	0.158	38	0.88	294.184		
Q5	0.009024	0.8322	-0.3670	0.8128	1.640	0.156	37	1.3	387.616		
Q10	0.01450	0.8306	-0.3691	0.7655	1.622	0.157	37	1.8	452.031		
Q25	0.02522	0.8292	-0.3697	0.7165	1.588	0.161	38	2.4	533.158		
Q50	0.03711	0.8286	-0.3693	0.6847	1.559	0.166	40	2.8	594.569		
Q100	0.05364	0.8281	-0.3683	0.6556	1.527	0.171	41	3.1	653.662		
Q200	0.07658	0.8276	-0.3669	0.6284	1.495	0.178	43	3.4	717.346		
Q500	0.1209	0.8272	-0.3646	0.5948	1.449	0.188	45	3.6	799.020		

Table 3. F	legression e	quations for es	timating 2-,	5-, 10-, 25-, 50-,	100-, 200-, a	nd 500-year peak s	streamflows for unreg	gulated streams in Ro	egions 1-7, Alaska	and	
contermi	ious pasins										
	r poak stroam	flow in cubic fo	ot por socon	d: A drainago a		miles: ST area of I	akes and pends (stora	(a) in porcont: P mo	an annual procinitati	on in	
inches; J,	mean minimu	m January temp	perature, in d	egrees Fahrenh	eit; E, elevatio	n, in feet; F, area of	forest, in percent]	ge), in percent, r , met			
Enter a si	te-descriptio	n name:									
S	her 2 - Cordo	va, AK									
		Exponent for	Exponent	Exponent for	Exponent	Average standard error of prediction (log	Average standard error of prediction	Average equivalent	Estimate of rec interval Q _T usin	urrence g user-	
	Constant	A	for ST	P	for J	units)	(percent)	years of record	supplied charac	teristics	
									User: Enter values shaded area for this (9999 indicates a d value that must be	in s region ummy replaced)	
		Region 1, Re	gion 3 (93 ga	aging stations)					A=	0.03	
		Applica	ble range of	/ariables:					ST=	0	
		A: 0.720-571;	ST: 0-26; P:	70-300; J: 0-32					P=	180	
									J=	16	
Q2	0.004119	0.8361	-0.3590	0.9110	1.635	0.158	38	0.88	13.960		
Q5	0.009024	0.8322	-0.3670	0.8128	1.640	0.156	37	1.3	18.984		
Q10	0.01450	0.8306	-0.3691	0.7655	1.622	0.157	37	1.8	22.379		
Q25	0.02522	0.8292	-0.3697	0.7165	1.588	0.161	38	2.4	26.588		
Q50	0.03711	0.8286	-0.3693	0.6847	1.559	0.166	40	2.8	29.708		
Q100	0.05364	0.8281	-0.3683	0.6556	1.527	0.171	41	3.1	32.674		
Q200	0.07658	0.8276	-0.3669	0.6284	1.495	0.178	43	3.4	35.847		
Q500	0.1209	0.8272	-0.3646	0.5948	1.449	0.188	45	3.6	39.834		

APPENDIX D: HYDRAULIC ANALYSIS

Cordova 18 Mile Fish Passage HY-8 Analysis Summary

	COP 20								
	Proposed Culvert: 15'-6" x 7'-3" Aluminum Box Culvert w/ Overflow 4.75' x 3.167' Pipe Arch	Existing Culvert: 5' CPM							
Culvert Inlet Invert Elevation	30.8	33.9							
Culvert Inlet Thalweg Elevation	34.7	33.9							
Culvert Diameter (ft)	7.3	5.0							
Embedment (ft)	3.8	0.0							
D (Depth to top of embedment, ft)	3.4	5.0							
	Q50 = 168								
Headwater Elevation	37.33	40.13							
HW (to embedment, ft)	2.66	6.2							
HW (to culvert invert, ft)	6.50	6.2							
Freeboard (ft)	0.75	-1.2							
HW/D	0.78	1.25							
	Q100 = 174								
Headwater Elevation	37.39	40.15							
HW (to embedment, ft)	2.72	6.3							
HW (to culvert invert, ft)	6.56	6.3							
Freeboard (ft)	0.69	-1.3							
HW/D	0.80	1.25							

HY-8 Culvert Analysis Report

COP 20 – Existing 5' CMP

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	5' Round Existing Discharge (cfs)	Roadway Discharge (cfs)	Iterations
37.19	Q2D2	51.20	51.20	0.00	1
39.61	2	128.00	128.00	0.00	1
40.03	5	144.00	141.56	2.16	22
40.07	10	152.00	142.85	8.87	6
40.11	25	162.00	144.09	17.65	5
40.13	50	168.00	144.73	22.99	4
40.15	100	174.00	145.33	28.47	4
40.00	Overtopping	140.72	140.72	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: Existing Culvert - COP 20

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	51.20	51.20	37.19	3.027	3.291	2-M2c	2.434	2.002	2.002	1.204	6.970	2.544
2	128.00	128.00	39.61	5.559	5.709	7-M2c	5.000	3.234	3.234	1.757	9.527	2.188
5	144.00	141.56	40.03	6.062	6.126	7-M2c	5.000	3.406	3.406	1.822	9.938	2.222
10	152.00	142.85	40.07	6.112	6.167	7-M2c	5.000	3.421	3.421	1.853	9.977	2.242
25	162.00	144.09	40.11	6.160	6.206	7-M2c	5.000	3.436	3.436	1.890	10.015	2.269
50	168.00	144.73	40.13	6.185	6.226	7-M2c	5.000	3.444	3.444	1.911	10.035	2.286
100	174.00	145.33	40.15	6.209	6.245	7-M2c	5.000	3.451	3.451	1.933	10.053	2.303

Table 2 - Culvert Summary Table: 5' Round Existing

Straight Culvert

Inlet Elevation (invert): 33.90 ft, Outlet Elevation (invert): 33.60 ft

Culvert Length: 57.00 ft, Culvert Slope: 0.0053

Site Data - 5' Round Existing

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 33.90 ft Outlet Station: 57.00 ft Outlet Elevation: 33.60 ft Number of Barrels: 1

Culvert Data Summary - 5' Round Existing

Barrel Shape: Circular Barrel Diameter: 5.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
51.20	34.80	1.20	2.54	0.18	0.43
128.00	35.36	1.76	2.19	0.26	0.50
144.00	35.42	1.82	2.22	0.27	0.48
152.00	35.45	1.85	2.24	0.28	0.47
162.00	35.49	1.89	2.27	0.28	0.47
168.00	35.51	1.91	2.29	0.29	0.46
174.00	35.53	1.93	2.30	0.29	0.46

Table 3 - Downstream Channel Rating Curve (Crossing: Existing Culvert - COP 20)

Tailwater Channel Data - Existing Culvert - COP 20

Tailwater Channel Option:	Irregular Channel
---------------------------	-------------------

Channel Slope: 0.0024

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	35.00	0.0350
3	40.00	35.00	0.0350
4	42.00	33.60	0.0300
5	57.00	33.60	0.0300
6	59.00	35.00	0.0350
7	99.00	35.00	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Existing Culvert - COP 20

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 40.00 ft

Roadway Surface: Gravel

Roadway Top Width: 40.00 ft

HY-8 Culvert Analysis Report

COP 20 – Proposed 15'-6" x 7'-3" Aluminum Box Culvert with 4.75' x 3.167' Pipe Arch Overflow

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	15'-6" x 7'-3" Alum. Box Discharge (cfs)	Overflow 4.75'x3.167' Pipe Arch Discharge (cfs)	Roadway Discharge (cfs)	Iterations
36.00	Q2D2	51.20	40.42	10.73	0.00	5
36.94	2	128.00	98.33	29.66	0.00	3
37.10	5	144.00	110.56	33.41	0.00	3
37.18	10	152.00	116.67	35.29	0.00	3
37.27	25	162.00	124.36	37.63	0.00	3
37.33	50	168.00	128.96	39.04	0.00	3
37.39	100	174.00	133.52	40.43	0.00	2
40.00	Overtopping	397.90	303.40	94.50	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: Proposed Culvert #12 - COP 20

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	51.20	40.42	36.00	1.028	1.374	3-M2t	1.369	0.652	1.143	1.207	2.611	2.555
2	128.00	98.33	36.94	1.851	2.304	3-M2t	3.406	1.186	1.760	1.825	4.125	2.275
5	144.00	110.56	37.10	2.002	2.461	3-M2t	3.406	1.282	1.827	1.892	4.471	2.294
10	152.00	116.67	37.18	2.077	2.539	3-M2t	3.406	1.328	1.859	1.923	4.640	2.309
25	162.00	124.36	37.27	2.171	2.636	3-M2t	3.406	1.385	1.897	1.961	4.849	2.330
50	168.00	128.96	37.33	2.228	2.693	3-M2t	3.406	1.418	1.919	1.983	4.972	2.343
100	174.00	133.52	37.39	2.284	2.749	3-M2t	3.406	1.451	1.941	2.005	5.093	2.358

Table 2 - Culvert Summary Table: 15'-6" x 7'-3" Alum. Box

Straight Culvert

Inlet Elevation (invert): 34.67 ft, Outlet Elevation (invert): 34.55 ft

Culvert Length: 59.00 ft, Culvert Slope: 0.0020

Site Data - 15'-6" x 7'-3" Alum. Box

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 30.83 ft

Outlet Station: 59.00 ft

Outlet Elevation: 30.71 ft

Number of Barrels: 1

Culvert Data Summary - 15'-6" x 7'-3" Alum. Box

Barrel Shape: Metal Box Barrel Span: 15.50 ft Barrel Rise: 7.25 ft Barrel Material: Corrugated Aluminum Embedment: 46.13 in Barrel Manning's n: 0.0350 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	51.20	10.73	36.00	1.055	1.192	3-M2t	1.032	0.696	1.007	1.207	2.696	2.555
2	128.00	29.66	36.94	1.932	2.143	3-M2t	2.049	1.237	1.625	1.825	4.336	2.275
5	144.00	33.41	37.10	2.080	2.298	3-M2t	2.293	1.324	1.692	1.892	4.680	2.294
10	152.00	35.29	37.18	2.153	2.375	3-M2t	2.440	1.366	1.723	1.923	4.850	2.309
25	162.00	37.63	37.27	2.241	2.470	3-M2t	3.167	1.417	1.761	1.961	5.056	2.330
50	168.00	39.04	37.33	2.294	2.527	3-M2t	3.167	1.447	1.783	1.983	5.179	2.343
100	174.00	40.43	37.39	2.345	2.583	3-M2t	3.167	1.475	1.805	2.005	5.298	2.358

Table 3 - Culvert Summary Table: Overflow 4.75'x3.167' Pipe Arch

Straight Culvert

Inlet Elevation (invert): 34.84 ft, Outlet Elevation (invert): 34.69 ft Culvert Length: 59.00 ft, Culvert Slope: 0.0025

Site Data - Overflow 4.75'x3.167' Pipe Arch

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 34.84 ft

Outlet Station: 59.00 ft

Outlet Elevation: 34.69 ft

Number of Barrels: 1

Culvert Data Summary - Overflow 4.75'x3.167' Pipe Arch

Barrel Shape: Pipe Arch Barrel Span: 57.00 in Barrel Rise: 38.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Headwall Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
51.20	35.70	1.21	2.56	0.18	0.43
128.00	36.31	1.82	2.28	0.27	0.53
144.00	36.38	1.89	2.29	0.28	0.50
152.00	36.41	1.92	2.31	0.29	0.49
162.00	36.45	1.96	2.33	0.29	0.49
168.00	36.47	1.98	2.34	0.30	0.48
174.00	36.49	2.00	2.36	0.30	0.48

Table 4 - Downstream Channel Rating Curve (Crossing: Proposed Culvert #12 - COP)

20)

Tailwater Channel Data - Proposed Culvert #12 - COP 20

Tailwater Channel Option: Irregular Channel

Channel Slope: 0.0024

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	36.00	0.0350
3	40.00	36.00	0.0350
4	42.00	34.49	0.0300
5	57.00	34.49	0.0300
6	59.00	36.00	0.0350
7	99.00	36.00	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Proposed Culvert #12 - COP 20

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 40.00 ft Roadway Surface: Gravel Roadway Top Width: 40.00 ft

Cordova 18 Mile Fish Passage HY-8 Analysis Summary

	COP 22	
	Proposed Culvert: 19'-10" x 7'-8" Aluminum Box Culvert w/ Overflow 5.33' x 3.583' Pipe Arch	Existing Culvert: 6' CMP
Culvert Inlet Invert Elevation	31.4	32.7
Culvert Inlet Thalweg Elevation	34.1	32.7
Culvert Diameter (ft)	7.7	6.0
Embedment (ft)	2.7	0.0
D (Depth to top of embedment, ft)	5.0	6.0
	Q50 = 413	
Headwater Elevation	38.25	41.42
HW (to embedment, ft)	4.15	8.7
HW (to culvert invert, ft)	6.83	8.7
Freeboard (ft)	0.84	-2.7
HW/D	0.83	1.45
	Q100 = 427	
Headwater Elevation	38.34	41.44
HW (to embedment, ft)	4.24	8.7
HW (to culvert invert, ft)	6.92	8.7
Freeboard (ft)	0.75	-2.7
HW/D	0.85	1.46

HY-8 Culvert Analysis Report

COP 22 – Existing 6' CMP

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	6' Round Existing Discharge (cfs)	Roadway Discharge (cfs)	Iterations
37.83	Q2D2	127.60	127.60	0.00	1
41.23	2	319.00	262.98	55.68	11
41.31	5	355.00	265.37	89.35	5
41.35	10	375.00	266.55	108.10	4
41.39	25	398.00	267.83	129.91	4
41.42	50	413.00	268.59	143.75	3
41.44	100	427.00	269.30	157.10	3
41.00	Overtopping	256.24	256.24	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: Existing Culvert - COP 22

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	127.60	127.60	37.83	4.797	5.133	2-M2c	3.926	3.055	3.055	1.749	8.819	2.744
2	319.00	262.98	41.23	8.524	8.305	7-M2c	6.000	4.440	4.440	2.382	11.723	2.953
5	355.00	265.37	41.31	8.606	8.368	7-M2c	6.000	4.460	4.460	2.472	11.775	3.037
10	375.00	266.55	41.35	8.646	8.399	7-M2c	6.000	4.470	4.470	2.521	11.801	3.084
25	398.00	267.83	41.39	8.690	8.433	7-M2c	6.000	4.480	4.480	2.575	11.829	3.137
50	413.00	268.59	41.42	8.717	8.453	7-M2c	6.000	4.486	4.486	2.609	11.845	3.171
100	427.00	269.30	41.44	8.741	8.472	7-M2c	6.000	4.492	4.492	2.641	11.861	3.202

Table 2 - Culvert Summary Table: 6' Round Existing

Straight Culvert

Inlet Elevation (invert): 32.70 ft, Outlet Elevation (invert): 32.40 ft

Culvert Length: 61.00 ft, Culvert Slope: 0.0049

Site Data - 6' Round Existing

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 32.70 ft Outlet Station: 61.00 ft Outlet Elevation: 32.40 ft Number of Barrels: 1

Culvert Data Summary - 6' Round Existing

Barrel Shape: Circular Barrel Diameter: 6.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
127.60	34.15	1.75	2.74	0.29	0.70
319.00	34.78	2.38	2.95	0.40	0.49
355.00	34.87	2.47	3.04	0.42	0.49
375.00	34.92	2.52	3.08	0.42	0.49
398.00	34.97	2.57	3.14	0.43	0.48
413.00	35.01	2.61	3.17	0.44	0.48
427.00	35.04	2.64	3.20	0.44	0.48

Table 3 - Downstream Channel Rating Curve (Crossing: Existing Culvert - COP 22)

Tailwater Channel Data - Existing Culvert - COP 22

Tailwater Channel Option:	Irregular Channel
---------------------------	-------------------

Channel Slope: 0.0027

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	34.00	0.0350
3	40.00	34.00	0.0350
4	42.00	32.40	0.0300
5	60.00	32.40	0.0300
6	62.00	34.00	0.0350
7	99.00	34.00	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Existing Culvert - COP 22

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 41.00 ft

Roadway Surface: Gravel

Roadway Top Width: 40.00 ft

HY-8 Culvert Analysis Report

COP 22 – Proposed 19'-10" x 7'-8"Aluminum Box Culvert with 5.33' x 3.583' Pipe Arch Overflow

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	19'-10" x 7'-8" Alum. Box Discharge (cfs)	Overflow 5.33'x3.583' Pipe Arch Discharge (cfs)	Roadway Discharge (cfs)	Iterations
36.14	Q2D2	127.60	110.12	17.46	0.00	5
37.62	2	319.00	265.46	53.53	0.00	4
37.87	5	355.00	294.74	60.24	0.00	3
38.00	10	375.00	311.06	63.94	0.00	3
38.15	25	398.00	329.84	68.16	0.00	3
38.25	50	413.00	342.10	70.90	0.00	2
38.34	100	427.00	353.57	73.45	0.00	2
41.00	Overtopping	778.21	649.81	128.40	0.00	Overtopping

Table 1 - Summary of Culvert Flows at Crossing: Proposed Culvert #6 - COP 22

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	127.60	110.12	36.14	1.705	2.054	3-M1t	1.678	1.063	1.802	1.727	3.451	2.930
2	319.00	265.46	37.62	3.071	3.500	3-M2t	3.117	1.902	2.510	2.435	6.038	3.027
5	355.00	294.74	37.87	3.308	3.742	3-M2t	3.392	2.043	2.602	2.527	6.478	3.105
10	375.00	311.06	38.00	3.439	3.876	3-M2t	3.584	2.117	2.651	2.576	6.718	3.149
25	398.00	329.84	38.15	3.591	4.028	3-M2t	4.942	2.200	2.705	2.630	6.988	3.199
50	413.00	342.10	38.25	3.676	4.126	3-M2t	4.942	2.253	2.740	2.665	7.161	3.232
100	427.00	353.57	38.34	3.755	4.218	3-M2t	4.942	2.307	2.772	2.697	7.321	3.262

Table 2 - Culvert Summary Table: 19'-10" x 7'-8" Alum. Box

Straight Culvert

Inlet Elevation (invert): 34.15 ft, Outlet Elevation (invert): 33.81 ft

Culvert Length: 74.00 ft, Culvert Slope: 0.0045

Site Data - 19'-10" x 7'-8" Alum. Box

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 31.42 ft

Outlet Station: 74.00 ft

Outlet Elevation: 31.09 ft

Number of Barrels: 1

Culvert Data Summary - 19'-10" x 7'-8" Alum. Box

Barrel Shape: Metal Box Barrel Span: 19.83 ft Barrel Rise: 7.67 ft Barrel Material: Corrugated Aluminum Embedment: 32.70 in Barrel Manning's n: 0.0350 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: Square Edge with Headwall Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	127.60	17.46	36.14	1.382	1.504	3-M1t	1.101	0.873	1.317	1.727	2.907	2.930
2	319.00	53.53	37.62	2.754	2.976	3-M2t	2.317	1.650	2.025	2.435	5.556	3.027
5	355.00	60.24	37.87	2.976	3.220	3-M2t	2.590	1.761	2.117	2.527	5.977	3.105
10	375.00	63.94	38.00	3.098	3.353	3-M2t	3.583	1.819	2.166	2.576	6.200	3.149
25	398.00	68.16	38.15	3.239	3.505	3-M2t	3.583	1.883	2.220	2.630	6.449	3.199
50	413.00	70.90	38.25	3.332	3.604	3-M2t	3.583	1.929	2.255	2.665	6.607	3.232
100	427.00	73.45	38.34	3.420	3.697	3-M2t	3.583	1.967	2.287	2.697	6.752	3.262

Table 3 - Culvert Summary Table: Overflow 5.33'x3.583' Pipe Arch

Straight Culvert

Inlet Elevation (invert): 34.66 ft, Outlet Elevation (invert): 34.30 ft Culvert Length: 83.00 ft, Culvert Slope: 0.0043

Site Data - Overflow 5.33'x3.583' Pipe Arch

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 34.66 ft

Outlet Station: 83.00 ft

Outlet Elevation: 34.30 ft

Number of Barrels: 1

Culvert Data Summary - Overflow 5.33'x3.583' Pipe Arch

Barrel Shape: Pipe Arch Barrel Span: 64.00 in Barrel Rise: 43.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
127.60	35.62	1.73	2.93	0.29	0.61
319.00	36.33	2.44	3.03	0.41	0.51
355.00	36.42	2.53	3.11	0.43	0.51
375.00	36.47	2.58	3.15	0.43	0.50
398.00	36.52	2.63	3.20	0.44	0.50
413.00	36.56	2.67	3.23	0.45	0.50
427.00	36.59	2.70	3.26	0.45	0.50

Table 4 - Downstream Channel Rating Curve (Crossing: Proposed Culvert #6 - COP 22)

Tailwater Channel Data - Proposed Culvert #6 - COP 22

Tailwater Channel Option:Irregular ChannelChannel Slope:0.0027

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	36.00	0.0350
3	40.00	35.20	0.0350
4	42.00	33.89	0.0300
5	60.00	33.89	0.0300
6	62.00	35.20	0.0350
7	99.00	36.00	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Proposed Culvert #6 - COP 22

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 200.00 ft Crest Elevation: 41.00 ft Roadway Surface: Gravel Roadway Top Width: 40.00 ft

Cordova 18 Mile Fish Passage HY-8 Analysis Summary

	COP 25					
	Proposed Culvert: 29'-0" x 8'-3" Aluminum Box Culvert w/ Overflow 5.916' x 3.916' Pipe Arch	Existing Culvert: (2) 6' CMPS				
Culvert Inlet Invert Elevation	21.8	24.5	24.1			
Culvert Inlet Thalweg Elevation	24.8	24.5	24.1			
Culvert Diameter (ft)	8.3	6.0	6.0			
Embedment (ft)	3.0	0.0	0.0			
D (Depth to top of embedment, ft)	5.3	6.0	6.0			
	Q50 = 962					
Headwater Elevation	30.29	34.92	34.92			
HW (to embedment, ft)	5.45	10.4	10.8			
HW (to culvert invert, ft)	8.45	10.4	10.8			
Freeboard (ft)	-0.20	-4.4	-4.8			
HW/D	1.04	1.74	1.80			
	Q100 = 1002					
Headwater Elevation	30.41	34.97	34.97			
HW (to embedment, ft)	5.57	10.5	10.9			
HW (to culvert invert, ft)	8.57	10.5	10.9			
Freeboard (ft)	-0.32	-4.5	-4.9			
HW/D	1.06	1.75	1.81			

HY-8 Culvert Analysis Report

COP 25 – Existing (2) 6' CMP

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	6' Existing Round West Discharge (cfs)	6' Existing Round East Discharge (cfs)	Roadway Discharge (cfs)	Iterations
29.84	Q2D2	282.00	129.86	152.12	0.00	6
34.52	2	705.00	304.14	313.92	86.59	10
34.69	5	801.00	308.41	318.05	173.76	5
34.78	10	857.00	310.56	320.12	225.99	5
34.87	25	919.00	312.69	322.18	283.31	4
34.92	50	962.00	314.10	323.54	323.95	4
34.97	100	1002.00	315.34	324.73	361.67	4
34.22	Overtopping	602.98	296.46	306.53	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: Existing Culvert - COP 25

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	282.00	129.86	29.84	4.837	5.344	2-M2c	3.161	3.083	3.083	2.457	8.874	2.113
2	705.00	304.14	34.52	10.020	9.265	7-M2c	6.000	4.762	4.762	3.626	12.639	2.850
5	801.00	308.41	34.69	10.191	9.389	7-M2c	6.000	4.793	4.793	3.844	12.738	2.982
10	857.00	310.56	34.78	10.277	9.453	7-M2c	6.000	4.808	4.808	3.966	12.787	3.054
25	919.00	312.69	34.87	10.365	9.518	7-M2c	6.000	4.823	4.823	4.098	12.837	3.132
50	962.00	314.10	34.92	10.422	9.561	7-M2c	6.000	4.833	4.833	4.187	12.870	3.184
100	1002.00	315.34	34.97	10.473	9.600	7-M2c	6.000	4.842	4.842	4.269	12.899	3.231

Table 2 - Culvert Summary Table: 6' Existing Round West

Straight Culvert

Inlet Elevation (invert): 24.50 ft, Outlet Elevation (invert): 23.90 ft

Culvert Length: 61.00 ft, Culvert Slope: 0.0098

Site Data - 6' Existing Round West

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 24.50 ft Outlet Station: 61.00 ft Outlet Elevation: 23.90 ft Number of Barrels: 1

Culvert Data Summary - 6' Existing Round West

Barrel Shape: Circular Barrel Diameter: 6.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	282.00	152.12	29.84	5.383	5.744	2-M2c	3.690	3.346	3.346	2.457	9.384	2.113
2	705.00	313.92	34.52	10.420	9.645	7-M2c	6.000	4.832	4.832	3.626	12.866	2.850
5	801.00	318.05	34.69	10.591	9.776	7-M2c	6.000	4.860	4.860	3.844	12.963	2.982
10	857.00	320.12	34.78	10.677	9.851	7-M2c	6.000	4.875	4.875	3.966	13.011	3.054
25	919.00	322.18	34.87	10.765	9.936	7-M2c	6.000	4.889	4.889	4.098	13.060	3.132
50	962.00	323.54	34.92	10.822	9.977	7-M2c	6.000	4.898	4.898	4.187	13.093	3.184
100	1002.00	324.73	34.97	10.873	10.018	7-M2c	6.000	4.906	4.906	4.269	13.121	3.231

Table 3 - Culvert Summary Table: 6' Existing Round East

Straight Culvert

Inlet Elevation (invert): 24.10 ft, Outlet Elevation (invert): 23.60 ft

Culvert Length: 60.00 ft, Culvert Slope: 0.0083

Site Data - 6' Existing Round East

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 24.10 ft Outlet Station: 60.00 ft Outlet Elevation: 23.60 ft Number of Barrels: 1

Culvert Data Summary - 6' Existing Round East

Barrel Shape: Circular Barrel Diameter: 6.00 ft Barrel Material: Corrugated Steel Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Thin Edge Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
282.00	26.36	2.46	2.11	0.17	0.32
705.00	27.53	3.63	2.85	0.25	0.32
801.00	27.74	3.84	2.98	0.26	0.32
857.00	27.87	3.97	3.05	0.27	0.32
919.00	28.00	4.10	3.13	0.28	0.32
962.00	28.09	4.19	3.18	0.29	0.32
1002.00	28.17	4.27	3.23	0.29	0.32

Table 4 - Downstream Channel Rating Curve (Crossing: Existing Culvert - COP 25)

Tailwater Channel Data - Existing Culvert - COP 25

Tailwater Channel Option: Irregular Channel	Tailwater Channel Option:	Irregular Channel
---	---------------------------	-------------------

Channel Slope: 0.0011

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	25.40	0.0350
3	40.00	25.40	0.0350
4	42.00	23.90	0.0300
5	67.00	23.90	0.0300
6	69.00	25.40	0.0350
7	99.00	25.40	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Existing Culvert - COP 25

Roadway Profile Shape: Constant Roadway Elevation

Crest Length: 200.00 ft

Crest Elevation: 34.22 ft

Roadway Surface: Gravel

Roadway Top Width: 40.00 ft

HY-8 Culvert Analysis Report

COP 25 – Proposed 29'-0" x 8'-3" Aluminum Box Culvert with 5.916' x 3.916' Pipe Arch Overflow

Crossing Discharge Data

Discharge Selection Method: User Defined

Headwater Elevation (ft)	Discharge Names	Total Discharge (cfs)	29'-0" x 8'-3" Alum. Box Discharge (cfs)	Overflow 5.916'x3.916' Pipe Arch Discharge (cfs)	Roadway Discharge (cfs)	Iterations
27.70	Q2D2	282.00	242.28	39.68	0.00	5
29.41	2	705.00	613.53	92.03	0.00	3
29.74	5	801.00	698.30	102.63	0.00	3
29.93	10	857.00	748.24	108.45	0.00	4
30.14	25	919.00	812.40	114.58	0.00	7
30.29	50	962.00	842.71	119.03	0.00	3
30.41	100	1002.00	879.83	122.43	0.00	4
34.23	Overtopping	1811.54	1611.64	199.91	0.00	Overtopping

 Table 1 - Summary of Culvert Flows at Crossing: Proposed Culvert #9 - COP 25

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	282.00	242.28	27.70	1.875	2.962	3-M1t	2.746	1.301	2.758	2.728	3.029	2.261
2	705.00	613.53	29.41	3.487	4.688	3-M2t	5.250	2.410	3.964	3.934	5.338	2.912
5	801.00	698.30	29.74	3.831	5.024	3-M2t	5.250	2.622	4.185	4.155	5.754	3.037
10	857.00	748.24	29.93	4.004	5.216	3-M2t	5.250	2.736	4.309	4.279	5.988	3.107
25	919.00	812.40	30.14	4.226	5.447	3-M2t	5.250	2.894	4.442	4.412	6.307	3.182
50	962.00	842.71	30.29	4.331	5.569	3-M2t	5.250	2.964	4.532	4.502	6.412	3.232
100	1002.00	879.83	30.41	4.459	5.703	3-M2t	5.250	3.049	4.615	4.585	6.574	3.277

Table 2 - Culvert Summary Table: 29'-0" x 8'-3" Alum. Box

Straight Culvert

Inlet Elevation (invert): 24.84 ft, Outlet Elevation (invert): 24.77 ft

Culvert Length: 52.00 ft, Culvert Slope: 0.0013

Site Data - 29'-0" x 8'-3" Alum. Box

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 21.84 ft

Outlet Station: 52.00 ft

Outlet Elevation: 21.77 ft

Number of Barrels: 1

Culvert Data Summary - 29'-0" x 8'-3" Alum. Box

Barrel Shape: Concrete Box Barrel Span: 29.00 ft Barrel Rise: 8.25 ft Barrel Material: Concrete Embedment: 36.00 in Barrel Manning's n: 0.0350 (top and sides) Manning's n: 0.0350 (bottom) Culvert Type: Straight Inlet Configuration: 1:1 Bevel Headwall Inlet Depression: None

Discharge Names	Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
Q2D2	282.00	39.68	27.70	2.151	2.641	3-M2t	2.669	1.323	2.278	2.728	3.310	2.261
2	705.00	92.03	29.41	3.712	4.530	3-M2t	3.917	2.140	3.484	3.934	5.317	2.912
5	801.00	102.63	29.74	4.036	5.022	7-M2t	3.917	2.280	3.705	4.155	5.732	3.037
10	857.00	108.45	29.93	4.223	5.312	7-M2t	3.917	2.352	3.829	4.279	5.981	3.107
25	919.00	114.58	30.14	4.429	5.631	4-FFf	3.917	2.431	3.917	4.412	6.289	3.182
50	962.00	119.03	30.29	4.584	5.861	4-FFf	3.917	2.484	3.917	4.502	6.534	3.232
100	1002.00	122.43	30.41	4.706	6.053	4-FFf	3.917	2.524	3.917	4.585	6.720	3.277

Table 3 - Culvert Summary Table: Overflow 5.916'x3.916' Pipe Arch

Straight Culvert

Inlet Elevation (invert): 25.34 ft, Outlet Elevation (invert): 25.25 ft Culvert Length: 70.00 ft, Culvert Slope: 0.0013

Site Data - Overflow 5.916'x3.916' Pipe Arch

Site Data Option: Culvert Invert Data

Inlet Station: 0.00 ft

Inlet Elevation: 25.34 ft

Outlet Station: 70.00 ft

Outlet Elevation: 25.25 ft

Number of Barrels: 1

Culvert Data Summary - Overflow 5.916'x3.916' Pipe Arch

Barrel Shape: Pipe Arch Barrel Span: 71.00 in Barrel Rise: 47.00 in Barrel Material: Steel or Aluminum Embedment: 0.00 in Barrel Manning's n: 0.0240 Culvert Type: Straight Inlet Configuration: Projecting Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
282.00	27.53	2.73	2.26	0.19	0.35
705.00	28.73	3.93	2.91	0.27	0.33
801.00	28.95	4.15	3.04	0.29	0.33
857.00	29.08	4.28	3.11	0.29	0.33
919.00	29.21	4.41	3.18	0.30	0.33
962.00	29.30	4.50	3.23	0.31	0.33
1002.00	29.38	4.58	3.28	0.31	0.33

Table 4 - Downstream Channel Rating Curve (Crossing: Proposed Culvert #9 - COP 25)

Tailwater Channel Data - Proposed Culvert #9 - COP 25

Tailwater Channel Option:Irregular ChannelChannel Slope:0.0011User Defined Observed Operations

User Defined Channel Cross-Section:

Coord No.	Station (ft)	Elevation (ft)	Manning's n
1	0.00	40.00	0.0350
2	2.00	26.80	0.0350
3	40.00	26.80	0.0350
4	42.00	24.80	0.0300
5	67.00	24.80	0.0300
6	69.00	26.80	0.0350
7	99.00	26.80	0.0350
8	101.00	40.00	0.0000

Roadway Data for Crossing: Proposed Culvert #9 - COP 25

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 1000.00 ft Crest Elevation: 34.23 ft Roadway Surface: Gravel Roadway Top Width: 36.00 ft

COP 20	
Slope	0.20%
Measured BFW (feet)	10.5-12
Measured BFD (feet)	1.5
Measured WSE (feet)	0.75
ADF&G Average OHW (feet)	30

Proposed Structure 15% Proposed Structure 65%	12'-11" X 6 15'-6" X 7'- 57" X 38" A	5'-0" 3" .luminum Pipe /	Arch	
Q=v*a (cfs)	v (ft/s)	a (sf)	h (ft)	w=4h

Q=v+a (crs)	V (ft/S)	a (sr)	n (ft)	w=	4n (ft)
	128	4	32	2.8	11.3
W/D ratio				4.0	

COP 22		
Slope	0.40%	
Measured BFW (feet)	15-23	
Measured BFD (feet)	2	
Measured WSE (feet)	1.08	
ADF&G Average OHW (feet)	25	

Proposed Structure 15% Proposed Structure 65%	15'-4" X 19'-10" X 64" X 43"	6'-5" 7'-8" Aluminum Pip	be Arch		
Q=v*a (cfs)	v (ft/s)	a (sf)	h (ft)	w=4	า (ft)
	319	4	80	4.5	17
W/D ratio				4.0	
QBKF(Design)		319 cfs			
QBKF(Reference)		128 cfs			
ABKF(Reference)		32 sf			
ABKF(Design)		79.75 sf			
WBKF(Reference)		11.3 ft			
dBKF(Reference)		2.8 ft			
WBKF(Design)		17.86 ft			
ABKF(Design)		79.75 sf			
WBKF(Design)		17.86 ft			
dBKF(Design)		4.47 ft			
dMAX(Reference)		3 ft			
dBKF(Design)		4.47 ft			

dBKF(Reference)

dMAX(Design)

2.8 ft

4.74 ft

Proposed Structure 15%	19'-10" X 7'-8"
Proposed Structure 65%	29'-0" X 8'-3"

17.9

dMAX(Design)

71" X 47" Aluminum Pipe Arch

Q=v*a (cfs) v (ft/s) a (sf) h (ft) w=4h (ft) 705 4 176 6.6 26.6 W/D ratio 4.0 4.0 QBKF(Design) 705 cfs 32 QBKF(Reference) 32 sf ABKF(Reference) 32 MBKF(Reference) 11.3 ft dBKF(Reference) 2.8 ft WBKF(Reference) 2.8 ft WBKF(Reference) 2.5 ft ABKF(Design) 176.25 sf wBKF(Design) 26.55 ft ABKF(Design) 176.25 sf wBKF(Design) 26.55 ft ABKF(Design) 6.64 ft dMAX(Reference) 3 ft							
705 4 176 6.6 26.6 W/D ratio 4.0 QBKF(Design) 705 cfs QBKF(Reference) 128 cfs ABKF(Reference) 32 sf ABKF(Design) 176.25 sf WBKF(Reference) 2.8 ft WBKF(Design) 26.55 ft ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft	Q=v*a (cfs)	v (ft/s)	a (sf)		h (ft)	w=4h	(ft)
W/D ratio 4.0 QBKF(Design) 705 cfs QBKF(Reference) 128 cfs ABKF(Reference) 32 sf ABKF(Reference) 11.3 ft dBKF(Reference) 2.8 ft WBKF(Design) 26.55 ft MBKF(Design) 26.55 ft dBKF(Design) 6.64 ft		705	4	176		6.6	26.6
QBKF(Design)705 cfsQBKF(Reference)128 cfsABKF(Reference)32 sfABKF(Design)176.25 sfWBKF(Reference)11.3 ftdBKF(Design)26.55 ftABKF(Design)176.25 sfWBKF(Design)26.55 ftdBKF(Design)6.64 ftdMAX(Reference)3 ft	W/D ratio					4.0	
QBKF(Design) 705 cfs QBKF(Reference) 128 cfs ABKF(Reference) 32 sf ABKF(Design) 176.25 sf WBKF(Reference) 2.8 ft WBKF(Reference) 26.55 ft WBKF(Design) 26.55 ft MBKF(Design) 26.55 ft MBKF(Design) 6.64 ft dMAX(Reference) 3 ft							
QBKF(Reference) 128 cfs ABKF(Reference) 32 sf ABKF(Design) 176.25 sf WBKF(Reference) 1.3 ft dBKF(Design) 26.55 ft WBKF(Reference) 26.55 ft WBKF(Design) 26.55 ft dBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	QBKF(Design)		705 cfs				
ABKF(Reference) 32 sf ABKF(Reference) 176.25 sf WBKF(Reference) 11.3 ft dBKF(Reference) 2.8 ft WBKF(Design) 26.55 ft ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	QBKF(Reference)		128 cfs				
ABKF(Design)176.25 sfWBKF(Reference)11.3 ftdBKF(Reference)2.8 ftWBKF(Design)26.55 ftABKF(Design)176.25 sfWBKF(Design)26.55 ftdBKF(Design)6.64 ftdMAX(Reference)3 ft	ABKF(Reference)		32 sf				
WBKF(Reference) 11.3 ft dBKF(Reference) 2.8 ft WBKF(Design) 26.55 ft ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	ABKF(Design)		176.25 sf				
dBKF(Reference) 2.8 ft WBKF(Design) 26.55 ft ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	WBKF(Reference)		11.3 ft				
WBKF(Design) 26.55 ft ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	dBKF(Reference)		2.8 ft				
ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	WBKF(Design)		26.55 ft				
ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft							
ABKF(Design) 176.25 sf WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft							
WBKF(Design) 26.55 ft dBKF(Design) 6.64 ft dMAX(Reference) 3 ft	ABKF(Design)		176.25 sf				
dBKF(Design) 6.64 ft	WBKF(Design)		26.55 ft				
dMAX(Reference) 3 ft	dBKF(Design)		6.64 ft				
dMAX(Reference) 3 ft							
	dMAX(Reference)		3 ft				
dBKF(Design) 6.64 ft	dBKF(Design)		6.64 ft				
dBKF(Reference) 2.8 ft	dBKF(Reference)		2.8 ft				

7.04 ft

SHER02 Hydraulic Summary										
	Q (CFS)	Shape	Bottom Width (ft)	Side Slope	A (ft ²)	R (ft)	S	n	h (ft)	V (fps)
Q _{fish}	2.36	Trapezoid	5	10:1	1.123532	0.134344	0.026	0.03	0.168154	2.100519
Q ₂	5.9	Trapezoid	5	10:1	2.13269	0.20306	0.026	0.03	0.275137	2.766459
Q ₁₀₀	30.7	Trapezoid	5	10:1	7.037892	0.401991	0.026	0.03	0.625379	4.362101