

GEOTECHNICAL REPORT for USFWS FISH PASSAGE IMPROVEMENTS COPPER RIVER HIGHWAY CORDOVA, ALASKA

Prepared for:

Bratslavsky Consulting Engineers, Inc. 500 W. 27th Avenue, Suite A Anchorage, AK 99503

Prepared by:

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing

NOVEMBER 2018

November 19, 2018 BCE # 1684.18

Heather Hanson, P.E. U.S. Fish & Wildlife Service 4700 BLM Road Anchorage, AK 99507

P: 907-271-1630 (cell)

E: <u>heather_hanson@fws.gov</u>

RE: Geotechnical Recommendations for the Proposed Fish Passage Improvements Project in Cordova, Alaska

Dear Heather,

Bratslavsky Consulting Engineers, Inc. (BCE) and its subconsultant, Northern Geotechnical Engineering, Inc. (NGE) have completed the geotechnical engineering assessment of the eleven (11) sites on the above referenced project. Our assessment suggests that most of the sites are suitable for the proposed improvements provided that our engineering recommendations are incorporated into the design.

In the following report we provide a summary of our field and laboratory programs, our conclusions and recommendations regarding the suitability of the project site to support the proposed improvements, and our recommendations for the design and construction of the proposed site improvements.

In the process of the field investigation, unsuitable materials were observed at four of the sites: COP 25, COP 33, COP 45, and CAB 2.

CAB 2 - The unsuitable materials encountered at CAB 2 are at the anticipated footing depth and we expect that they will have to be removed during the excavation for the proposed improvements.

COP 25, COP 33, COP 45 - Excavation of the unsuitable materials at these three sites is not feasible nor is it cost effective. Therefore, it is recommended that screw anchors (or piling) be installed under the culvert foundation to transfer the loads into more competent soils.

Bratslavsky Consulting Engineers, Inc. Cordova Fish Passage Project—Geotechnical Recommendations November 19, 2018

We appreciate the opportunity to provide professional services for this USFWS Program in Cordova. Please contact us with any questions or comments you may have regarding the information presented in this report.

Sincerely,

Egor Esipov

Project Manager

Table of Contents

1.0 INTRODUCTION	1
2.0 PROJECT OVERVIEW	1
3.0 CURRENT PROJECT SITE ACTIVITIES	1
3.1 Subsurface Exploration	1
3.2 Survey	
4.0 LABORATORY TESTING	
5.0 DESCRIPTION OF SUBSURFACE CONDITIONS	4
5.1 General Subsurface Profile	4
6.0 ENGINEERING CONCLUSIONS AND RECOMMENDATIONS	4
6.1 General Site Conclusions	4
6.2 Earthworks	5
6.3 Shallow Foundations	
6.4 Settlements	
6.5 Seismic Design Parameters	6
6.6 Winter Construction	7
7.1 SITE COP 1	
7.1.1 Subsurface Profile7.1.2 Soil Bearing Capacity	7
7.1.2 Soil Bearing Capacity	٥ و
7.2.1 Subsurface Profile	8
7.2.2 Soil Bearing Capacity	8
7.3 SITE COP 20	
7.3.1 Subsurface Profile	
7.3.2 Soil Bearing Capacity	9
7.4 SITE COP 22	9
7.4.1 Subsurface Profile	
7.4.2 Soil Bearing Capacity	
7.5 SITE COP 25	
7.5.1 Subsurface Profile	
7.5.2 Soil Bearing Capacity	
7.6 SITE COF 33	
7.6.2 Soil Bearing Capacity	
7.7 SITE COP 43	
7.7.1 Subsurface Profile	
7.7.2 Soil Bearing Capacity	11
7.8 SITE COP 44	
7.8.1 Subsurface Profile	
7.8.2 Soil Bearing Capacity	
7.9 SITE COP 45	
7.9.1 Subsurface Profile	
7.9.2 Soil Bearing Capacity	
7.10 SITE CAB 2	
7.10.1 Substitute Frome	
7.10.2 Don Bouring Cupacity	1

7.11 SITE SHER 1	13
7.11.1 Subsurface Profile	13
7.11.2 Soil Bearing Capacity	13
	DD13
9.0 CLOSURE	
	st of Figures
	Site Overview
	Site COP 1
	Site COP 9
Figure 4	Site COP 20
Figure 5	Site COP 22
Figure 6	Site COP 25
Figure 7	Site COP 33
Figure 8	
Figure 9	Site COP 44
Figure 10	Site COP 45
Figure 11	Site CAB 2
Figure 12	Site SHER 1
Figure 13	
Figure 14	
Figure 15	Footing Detail
Figure 16	Screw Anchor Foundation Support
List	of Appendices
Appendix A	Graphical Borehole Logs
Appendix B	Laboratory Testing
Appendix C	USGS Seismic Site Classification Report

NORTHERN GEOTECHNICAL ENGINEERING, INC. / TERRA FIRMA TESTING

Laboratory Testing

Geotechnical Engineering

Instrumentation

Construction Monitoring Services

Thermal Analysis

1.0 INTRODUCTION

In this report, we (Northern Geotechnical Engineering, Inc. *d.b.a.* Terra Firma Testing) present the results of a geotechnical assessment that we conducted for the proposed U.S. Fish and Wildlife Service (USFWS) fish passage improvements along the Copper River Highway in Cordova, Alaska; hereafter referred to as "the project site". We provided our professional service in accordance with our service fee proposal #18-159 which we submitted to Bratslavsky Consulting Engineers, Inc. (BCE) on August 10, 2018. BCE authorized our proposed scope of service on October 4, 2018 by signed agreement contract.

BCE subcontracted us to perform subsurface explorations and geotechnical engineering analysis and provide design recommendations to replace eleven existing culverts along the Copper River Highway and Cabin Lake Road in Cordova, Alaska. The purpose of this project is to improve fish habitat and migration across the Copper River Highway. In this report, we present the results of our geotechnical assessment conducted for the proposed U.S. Fish and Wildlife Service (USFWS) fish passage improvements.

2.0 PROJECT OVERVIEW

This project lies within a geographic area that has been identified to be affected by the Exxon Valdez Oil Spill (EVOS). The EVOS Trustee Council (EVOSTC) has made the restoration of this area a priority, as it has affected a wide range of wildlife. This project is aimed to support the previous restoration efforts by the EVOSTC.

The restoration effort consists of ten proposed fish passage sites along the Alaska State Highway 10, also known as the Copper River Highway and one site along Cabin Lake Road near Cordova, Alaska. The fish passage sites are shown on the attached Figure 1. The Copper River Highway is a 50-mile, two-lane gravel surface road that was previously used as the Copper River and Northwestern Railway. The 73 culverts along the highway were not properly designed and, as such, the highway functions similarly to a dike. The culvert design has reduced the ecological functions in the area and causes expensive road repair following major high-water events.

To improve the drainage and increase fish habitat within the Copper River Watershed and Delta, the USFWS is proposing to replace/install fish passages at the eleven sites deemed highest priority.

3.0 CURRENT PROJECT SITE ACTIVITIES

3.1 Subsurface Exploration

We coordinated and directed a subsurface exploration program at the project site to help characterize the subsurface conditions of the project site as they currently exist. We subcontracted Discovery Drilling, Inc. (DDI) to provide the necessary geotechnical exploration services. A qualified representative from our office was present on-site during the entire exploration program

to select the exploration locations, direct the exploration activities, log the geology of each exploration, and collect representative samples for further identification and laboratory analysis. Under our direction DDI advanced two soil borings, one upstream and one downstream, at each site for a total of 22 soil borings on October 12, 2018 through October 15, 2018 to depths of approximately 21.5 feet below the existing ground surface (bgs). General boring locations for each site are shown in Figures 2 through 12.

Under our direction, DDI performed a Modified Penetration Test (MPT) at regular intervals during the drilling of each borehole. An MPT can be used to assess the consistency of a soil interval and to collect representative soil samples. An MPT is performed by driving a 2.0-inch O.D. or 3.0-inch O.D. split-spoon sampler at least 18 inches past the bottom of the advancing augers with blows from a 340-lb drop-hammer, free-falling 30 inches onto an anvil attached to the top of the drill rod stem. Our field representative recorded the hammer blows required to drive the modified split-spoon sampler the entire length of each sample interval, or until sampler refusal was encountered. We have provided the field blow count data for each sample interval (in six-inch increments) on the graphical borehole logs contained in Appendix A of this report.

During the course of our subsurface exploration program, we encountered a physical phenomenon common to hollow-stem auger drilling known as "sand-heave" below the groundwater level. Sand-heave typically occurs when sampling saturated sand deposits with hollow stem augers/split-spoon samplers, as the increased hydrostatic pressure outside of the hollow-stem augers forces a sand slurry up into the hollow auger flights when the drill stem is removed (to allow for split-spoon sampling). At times, sand-heave can be significant; filling the inside of the hollow-stem auger flights with several feet of densely-packed sand. As a result, sand-heaving forces disturb the insitu density of the sand deposit at the tip of the advancing augers and can lead to the collection of unrepresentative blow count data (i.e., soil resistance measurements) and a disturbed split-spoon sample.

Sand-heave can typically be controlled by filling the inside of the augers with an appropriate drilling fluid (e.g., water, drill mud, etc.) which equalizes the hydrostatic pressures inside and outside of the augers. In order to prevent sand heave, once below the water table, DDI primed the augers with water for each sample. We have noted on our borehole logs when efforts by DDI were ineffective in preventing the sand heave.

We corrected the field blow count data for all 22 boreholes for standard confining pressure, drill rod length, and drop-hammer operation procedure to estimate a standard $(N_I)_{60}$ value for each sample interval. $(N_I)_{60}$ values are a measure of the relative density (compactness) and consistency (stiffness) of cohesionless or cohesive soils, respectively. Our estimate of the $(N_I)_{60}$ values is based on the drop-hammer blows required to drive the spilt-spoon sampler the final 12-inches of an 18-inch MPT. We have provided our estimated $(N_I)_{60}$ values for each sample interval on the graphical borehole logs contained in Appendix A of this report. The automatic drop-hammer that DDI used for this project is not standard, so we applied a correction factor of 1.1 to the $(N_I)_{60}$ values to

account for the efficiency of the automatic drop-hammer used. We have provided a graphical plot of the field blow count corrections that we used to correct for confining pressure and drill rod length in Figure 13 of this report.

Our field representative photographed each split-spoon sample that they collected during our exploration program and we have included these photographs in Appendix A of this report. Our field representative sealed each sample that they collected during our subsurface exploration program inside of an air-tight bag and/or container, to help preserve the moisture content of each sample, and then submitted each sample to our laboratory for further identification and analysis.

Once the exploration activities were complete, we directed DDI to backfill the annulus of each exploration with its respective drill cuttings.

3.2 Survey

BCE and the U.S. Fish and Wildlife Service met on site on October 10, 2018. A surveyor, contracted by BCE, was also on site and placed stakes at each of the proposed culvert crossing improvements.

4.0 LABORATORY TESTING

We collected a total of 154 soil samples from the 22 geotechnical borings that DDI advanced at the project site and submitted all of the soil samples to our laboratory for further identification and geotechnical analysis. We tested select soil samples in accordance with the respective ASTM standard test methods including:

- moisture content analysis (ASTM D-2216);
- determination of fines content (a.k.a. P200 ASTM D-1140);
- grain size sieve and hydrometer analysis (ASTM D-6913 & D-422); and
- organic content (ASTM D2974);

It is important to note that ASTM test method D-6913 requires that any soil sample specimen which is to be submitted for gradational analysis (by ASTM D-422 or other methods) must satisfy a minimum mass requirement based on the maximum particle size of the sample specimen. Split-spoon sampling techniques (standard or modified), as well as other small-diameter soil sampling techniques (e.g., macro-core, etc.), typically recover anywhere from approximately 1 to 10 pounds of sample specimen. The amount of sample specimen recovered can be influenced by (amongst other variables) the soil gradation, soil density, sample interval, sampler tooling, and soil moisture content. As a result, samples of coarse-grained soils (with individual soil particles greater than approximately 0.75 inches in diameter) collected with small-diameter sampling methods (e.g., split-spoons, macro-core, etc.) may not meet the minimum mass requirement specified by Table 2 of ASTM D-6913. This may result in inaccurate gradational and frost classification results. The use of small-diameter sampling devices in coarse-grained soils (e.g., sand and gravel) can result in

the collection of unrepresentative samples due to: the exclusion of oversized particles (larger than the opening of the sampler) from the sample; and the mechanical breakdown/degradation of coarse-grained particles by the sampling process (producing an unrepresentative increase in smaller-diameter particles in the sample). Both of these sampling biases can skew laboratory test results towards the fine-grained end of the gradational spectrum.

The laboratory test results, along with the observations we made during our subsurface exploration efforts, aid in our evaluation of the subsurface conditions at the project site and help us to assess the suitability of the subsurface materials located at the project site to support the proposed improvements. We have included the results of our geotechnical laboratory analyses on the graphical exploration logs contained in Appendix A of this report and on the laboratory data sheets contained in Appendix B of this report.

5.0 DESCRIPTION OF SUBSURFACE CONDITIONS

We compiled our field observations with the results from our laboratory analyses to produce graphical logs of each subsurface exploration (Appendix A). The graphical exploration logs depict the subsurface conditions that we identified at each exploration location and help us to interpret/extrapolate the subsurface conditions for areas adjacent to, and immediately surrounding, each exploration location across the project site

5.1 General Subsurface Profile

Each site exploration was advanced through the road section at the locations where culverts are proposed to be installed/replaced. The road section generally consists of well-graded gravel with silt and sand to well-graded sand with silt and gravel and ranged between 4 and 10 feet in thickness. Differentiation between the road and the underlying native soils was not consistently apparent. Underlying the road section, the soils are consistent with streambed deposits, consisting of sands and gravels with varying amounts of silt. We provide more detailed subsurface profiles for each site in Section 7.0.

6.0 ENGINEERING CONCLUSIONS AND RECOMMENDATIONS

6.1 General Site Conclusions

Based on the findings of our field efforts and laboratory testing, it is our conclusion that the sand and gravel soils which we observed across at each project site are generally suitable to support the proposed improvements; provided that our concerns and recommendations that we present in this report are addressed by the design and construction processes.

Based on the example figures in the request for proposal submitted by the USFWS, we anticipate that the most likely culvert will be an open-channel, box culvert design (as shown in Figure 14). We have based our recommendation and conclusions to accommodate this design. If the design is significantly different, we will revise our recommendations accordingly.

6.2 Earthworks

Our recommendations assume that any shallow foundations (i.e., poured-concrete footings) will be founded either directly onto the undisturbed sand and gravel soils or compacted structural fill pads constructed directly above the undisturbed silty sand and gravel soils. Any structural fill materials used on-site should be compacted to a minimum of 95 percent of the modified Proctor density.

Any material removed during the initial site grading and excavation activities, which does not contain any organic/deleterious material, and has relatively low silt content (less than 15 percent passing the #200 sieve), can be re-used on-site as structural fill. Proper placement and compaction techniques need to be applied during the backfill. Additional laboratory testing may be required to verify the frost susceptibility of any excavated soil for use in shallow fill applications.

All earthworks should be completed with quality control inspection, including: bottom-of-hole inspections; fill gradation classification; and in-situ compacting testing. A bottom-of-hole inspection should be conducted by a qualified geotechnical engineer, geologist, or special inspector following site excavation activities (and before any foundation construction begins) in order to visually confirm the findings of this report and provide recommendations for any non-conforming conditions encountered during the excavation activities.

Any and all fill material used should be placed at 95 percent of the modified Proctor density as determined by ASTM D-1557, unless specifically stated otherwise in other sections of this report. The thickness of individual lifts will be determined based on the equipment used, the soil type, and existing soil moisture content. Typically, fill material will need to be placed in lifts of less than one-foot in thickness. All earthworks should be completed with quality control inspection.

In our professional experience, structural fill should have less than approximately 10 to 15 percent passing the #200 sieve for ease of placement. Soils with higher silt contents can be used within the foundation footprint. However, the effort required to achieve proper compaction of silt-rich soils may be more expensive than purchasing better grade materials. The time of year, existing moisture content, rainfall, air temperature, and fill temperature can all have an impact on the effort required to adequately compact silt-rich material.

Any excavated fill or native sand and gravel soils (which are free of organic material and have relatively low silt contents) which are stockpiled on-site (for later use as structural backfill) should be protected from additional moisture inputs (precipitation, etc.) through the use of plastic tarps, etc. Additional moisture inputs can have detrimental effects on the effort needed to achieve proper compaction rates.

6.3 Shallow Foundations

Care should be taken during foundation excavation activities to limit the disturbance of the bottom of any foundation excavations. The bottom of any foundation excavation should be moisture conditioned and proof-rolled as necessary to return the exposed soils to their original in-situ density.

6.3.1.1 Strip Footings

Strip footings can be founded directly onto the undisturbed sand and gravel. The minimum horizontal dimension for the strip footings should be 16 inches. The footings should be placed a minimum of 24 inches below the finished streambed elevation to achieve the recommended allowable soil bearing capacity and help resist any lateral forces.

6.4 Settlements

Settlements for shallow foundations should be within tolerable limits, provided that they are placed directly onto the undisturbed sand and gravel or structural. We anticipate a total settlement for shallow concrete foundations placed on either the undisturbed describe the foundation soils and/or or structural fill placed above the undisturbed describe the foundation soils to be less than three-quarters (3/4) of an inch, with differential settlements comprising about one-half (1/2) of the total anticipated settlement. Settlement amounts could increase substantially if the structural fill material used to bring any foundation pads to grade is not properly compacted. Most of the settlements should occur as the building loads are applied, such that additional long-term settlements should be relatively small and within tolerable limits.

6.5 Seismic Design Parameters

The seismic site classification for the project site is D based on the $(N_I)_{60}$ values that we calculated for the sand and gravel soils that occur at the project site. We utilized the United States Geological Survey (USGS) Seismic Design Maps tool for the project site in Cordova, AK as shown at the website (http://earthquake.usgs.gov/designmaps/us/application.php) to calculate the seismic design parameters for the project site, which are $F_a = 1.000$ ($S_s = 1.630$ g) and $F_v = 1.500$ ($S_I = 0.823$ g). A copy of the USGS Design Maps report for the project site is contained in Appendix C of this report.

During our field explorations, we encountered soils which have the potential to liquefy under a strong-motion seismic event. In the event liquefaction occurs, the soils under both the road and the culvert will be impacted equally. As such, measures to mitigate liquefaction of the soils are unlikely to cost effective.

The potential for earthquake-induced lateral spreading and pressure ridges is unlikely.

6.6 Winter Construction

It is imperative that shallow foundations remain in a thawed state for the entire construction period; even when dealing with soils that have little to no frost susceptibility. Foundation soils that are allowed to freeze during the initial construction may be compromised by the development of ice lenses. Upon thawing, which may take several weeks or months, potential differential settlements could distort the structure resulting in damaged foundations. If construction extends into the winter months, temporary enclosures should be constructed which completely enclose foundations and heat should be applied to the enclosure to prevent freezing of the soils located beneath any foundation.

Proper placement and compaction of structural fill is not possible when fill material is frozen, and as such, frozen fill material should never be used for structural support unless it has been subsequently thawed and compacted to 95 percent of the modified Proctor density (throughout its vertical extent). Furthermore, subgrade soils (fill or native) need to be completely thawed prior to the placement and compaction of additional lifts of thawed fill material. In our professional experience, ambient soil temperatures need to be above 37 °F in order to achieve efficient compaction. It is extremely difficult to achieve compaction levels equal to 95 percent of the modified Proctor density in fill material that is between 32 °F to 37 °F.

7.0 DESIGN RECOMMENDATIONS

For the culvert foundations we assumed a strip foundation on each side of the culvert. The assumed foundation is a minimum of 16 inches wide and two feet in depth as shown in Figure 15. The forces on the foundation are also shown in Figure 15. Soil pressure on the culvert arch can be calculated assuming a soil density of 135 pcf. Traffic loads will be a function of the cover depth and wheel loads. We have not provided these loads because we have not received the final design.

7.1 SITE COP 1

7.1.1 Subsurface Profile

The soils at this site are comprised of approximately five feet of well graded gravel with silt and sand. The gravel is underlain by approximately four feet of well graded sand with silt and gravel to well graded sand with gravel on the upstream side and two feet of silty sand overlaying well graded sand with silt and gravel on the downstream side. There is a thin (<2') layer of stiff silt underlying the sand on the downstream side. The sand and silt are underlain by approximately ten feet of poorly graded sand with silt and gravel overlaying stiff silt.

We encountered groundwater at this site at approximately six to seven feet below the road surface.

7.1.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,800 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 2,300 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.2 SITE COP 9

7.2.1 Subsurface Profile

Upstream, the soils consist of approximately 5 feet of poorly graded gravel with sand overlaying approximately 5 feet of poorly graded sand with silt and gravel and approximately 2 feet of well graded gravel with silt and sand. Downstream, the soils consist of approximately 12 feet of well graded gravel with silt and sand. Underlying the gravel, the soils consist of silty sand to sandy silt to the extents of our exploration.

We encountered groundwater at this site at approximately seven to nine feet below the road surface.

7.2.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed silty sand may be designed for an allowable soil bearing capacity of 2,200 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 2,500 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.3 SITE COP 20

7.3.1 Subsurface Profile

The upstream soils consist of approximately seven feet of poorly graded to well graded gravel and sand with varying amounts of silt overlaying approximately two feet of well graded sand. Underlying the sand, the soils consist of well graded gravel with sand. We encountered sand heaving in the auger during our exploration at approximately 20 feet below the road surface.

The downstream soils consist of approximately 10 feet of well graded to poorly graded sand with silt. Underlying the sand, the soils consist of approximately 5 feet of well graded gravel with sand overlaying well graded sand with silt and gravel.

We encountered groundwater at this site approximately five to six feet below the road surface.

7.3.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,800 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 1,800 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.4 SITE COP 22

7.4.1 Subsurface Profile

In our upstream exploration, we encountered approximately seven feet of medium dense to loose, well graded sand with silt and gravel overlaying medium dense, well graded gravel with sand and varying amounts of silt.

In our downstream exploration, we encountered approximately five feet of medium dense, well graded gravel with silt and sand overlaying approximately five feet of loose to medium dense, well graded sand with silt and gravel. Underlaying the sand is approximately two feet of medium dense, well graded sand with gravel overlaying dense to loose, poorly graded sand with gravel.

We encountered groundwater at this site at approximately six to seven feet below the road surface.

7.4.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,500 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 2,500 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.5 SITE COP 25

7.5.1 Subsurface Profile

Upstream, the soils consist of approximately five feet of loose, well graded gravel overlaying approximately five feet of very loose to loose, well graded sand with gravel and varying amounts of silt. The soils underlaying the sand are approximately five feet of medium dense well graded gravel with sand overlaying medium dense sand to sand with silt and gravel.

Downstream, the soils consist of approximately 15 feet of medium dense to very loose sand with gravel and varying amounts of silt. Underlying the sand is approximately two to three feet of highly organic soil/peat underlain by loose sand with silt.

We encountered groundwater at this site at approximately five to seven feet below the road surface.

7.5.2 Soil Bearing Capacity

The highly organic soil/peat we encountered at approximately 15 feet below the road surface is not suitable for foundation support. Excavation of the peat is not feasible given the distance below the groundwater table. We recommend using 2-inch diameter screw anchors with a 10-inch diameter flight (as shown in Figure 16) to transfer the load through the peat to the underlying sandy soils. The screw anchor at 20 feet below the road surface can be designed for an allowable bearing capacity of 4,000 pounds. The culvert foundation may be designed for an allowable lateral resistance of 2,000 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.6 SITE COP 33

7.6.1 Subsurface Profile

The soils we encountered in the upstream exploration consisted of approximately 12 feet of loose to very loose, well graded gravel with sand overlying approximately three feet of very loose, silty sand and approximately three feet of very loose sand with silt and gravel. We encountered a thin (<1') layer of decomposing wood debris at approximately 16 feet below the road surface overlaying soft silt and loose silty sand.

In the downstream exploration, we encountered loose, poorly graded gravel and loose silty sand to approximately eight feet below the road surface. Underlying the silty sand is approximately five feet of loose, poorly graded gravel with silt and sand overlaying medium dense, poorly graded sand with silt and gravel to loose silty sand and silty gravel.

We encountered groundwater at this site at approximately seven feet below the road surface.

7.6.2 Soil Bearing Capacity

The decomposing wood debris we encountered at approximately 17 feet below the road surface is not suitable for foundation support. Excavation of the debris is not feasible given the distance below the groundwater table. We recommend using 2-inch diameter screw anchors with a 10-inch diameter flight (as shown in Figure 16) to transfer the load through the peat to the underlying sandy soils. The screw anchor at 20 feet below the road surface can be designed for an allowable bearing capacity of 4,000 pounds. The culvert foundation may be designed for an allowable lateral resistance of 2,800 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.7 SITE COP 43

7.7.1 Subsurface Profile

Upstream, we encountered approximately seven feet of medium dense to loose, well graded sand with silt and gravel overlaying loose to medium dense silty sand and gravel.

Downstream, we encountered approximately five feet of medium dense, well graded gravel with silt and sand overlaying approximately two feet of medium dense, well graded sand with gravel and approximately 15 feet of loose to very loose silty sand to medium dense, poorly graded sand with silt and gravel.

We encountered groundwater at this site at approximately three feet below the road surface.

7.7.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,400 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 1,200 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.8 SITE COP 44

7.8.1 Subsurface Profile

The soils upstream consist of approximately 10 feet of dense to medium dense, well graded gravel with sand overlaying approximately 3 feet of loose, sand with silt and gravel. Underlying the loose sand is very soft to medium stiff sandy silt to the bottom of the exploration.

The soils downstream consist of approximately 10 feet of very dense to medium dense well graded gravel and sand overlaying approximately 5 feet of loose sand with gravel. Underlying the loose sand is very loose to loose, silty sand to the bottom of the exploration.

We encountered groundwater at this site at approximately 2.5 feet below the road surface.

7.8.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 2,300 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 1,200 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.9 SITE COP 45

7.9.1 Subsurface Profile

In our upstream exploration, we encountered approximately five feet of well graded sand with gravel overlaying very loose silty sand to ten feet below the road surface. Underlying the silty sand is approximately 10 feet of medium dense sand and gravel.

Downstream, the soils consist of approximately 10 feet of medium dense, well graded to poorly graded gravel and sand with silt. Underlying the sand and gravel is approximately three feet of very loose, silty sand overlaying medium dense gravel with silt and sand.

We encountered groundwater at this site at approximately three feet below the road surface.

7.9.2 Soil Bearing Capacity

The very loose silty sand we encountered at approximately seven to ten feet below the road surface is not suitable for foundation support. Excavation of the loose soil is not feasible given the distance below the groundwater table. We recommend using 2-inch diameter screw anchors with a 10-inch diameter flight (as shown in Figure 16) to transfer the load through the very loose soil strata to the underlying dense sand and gravel soils. The screw anchor at 20 feet below the road surface can be designed for an allowable bearing capacity of 3,500 pounds. The culvert foundation may be designed for an allowable lateral resistance of 1,100 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.10 SITE CAB 2

7.10.1 Subsurface Profile

Due to utility conflicts at the site, both borings were advanced on the downstream side of the road on either side of the culvert. In the northern boring, we encountered approximately seven feet of medium dense, well graded gravel with silt and sand overlaying approximately eight feet of loose, well graded sand with silt and gravel. Underlying the sand is loose to medium dense silty sand.

The soils in the southern boring consisted of approximately three feet of gravel with silt and sand overlaying medium stiff silt with sand to approximately five feet below the road surface. Underlying the silt is approximately one foot of silty sand. We encountered solid wood debris at approximately six feet below the road surface overlaying approximately eight feet of medium dense, well graded gravel with silt and sand. Underlying the gravel is silt with sand to silty sand to the depth of the exploration.

We encountered groundwater at this site at approximately 4.5 below the road surface.

7.10.2 Soil Bearing Capacity

The wood debris encountered at approximately six feet below the road surface will need to be completely removed from the footprint of the proposed culvert.

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,500 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 1,500 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

7.11 SITE SHER 1

7.11.1 Subsurface Profile

This site contained two culvert crossings. One crossing was immediately adjacent to the Copper River Highway. This culvert was smaller in diameter and we observed it to be completely submerged. The second culvert was approximately 500 feet from the highway and was in very poor condition. The culvert was large, contained no water around the entrance or exit, and appeared to have collapsed in the center of the road. Conversations with the design engineer led us to understand that the new culver crossing would be placed between the two existing culverts. The road at the site was very narrow, so our borings were placed adjacent to the existing culverts.

In the northern boring, we encountered approximately seven feet of poorly graded gravel with sand overlying medium dense to loose, well graded to poorly graded sand with silt and varying amounts of gravel.

In the southern boring, the soils consisted primarily of medium dense to loose sand and silty sand with varying amounts of gravel.

We encountered groundwater at this site at approximately six below the road surface.

7.11.2 Soil Bearing Capacity

Concrete foundations placed on the undisturbed sand and gravel may be designed for an allowable soil bearing capacity of 1,700 pounds per square foot (psf). The culvert foundation may be designed for an allowable lateral resistance of 2,000 psf. Lateral forces may also be resisted by friction between the concrete foundations and the underlying soil. The frictional resistance may be calculated using a coefficient of friction of 0.4 between the concrete and soil.

8.0 THE OBSERVATIONAL METHOD

A comprehensive geoprofessional service (e.g., geotechnical, geological, civil, and/or environmental engineering, etc.) should consist of an interdependent, two-part process comprised of:

Part I - pre-construction site assessment, engineering, and design; and

Part II - continuous construction oversight and design support.

This process, commonly referred to in the geoprofessional industry as "The Observational Method", was developed to reduce the costs required to complete a construction project, while simultaneously reducing the overall risk associated with the design and construction of the project.

In geotechnical engineering, Part I of the Observational Method (OM) begins with a geotechnical assessment of the site, which typically consists of some combination of literature research, site reconnaissance, subsurface exploration, laboratory testing, and geotechnical engineering. These efforts are usually documented in a formal report (e.g., such as this report) that summarizes the findings of the geotechnical assessment, and presents provisional geotechnical engineering recommendations for design and construction. Geotechnical assessment reports (and the findings and recommendations contained within) are considered provisional due to the fact that their contents are typically based primarily on limited subsurface information for a site. Most conventional geotechnical exploration programs only physically characterize a very small percentage of a given site, as it is typically cost prohibitive to conduct extensive (i.e. high density/frequency) exploration programs. As an alternative, geoprofessionals use the subsurface information available for a site to extrapolate subsurface conditions between exploration locations and develop appropriate provisional recommendations based on the inferred site conditions. As a result, the geoprofessional of record cannot be certain that the provisional recommendations will be wholly applicable to the site, as subsurface conditions other than those identified during the geotechnical assessment may exist at the site which could present obstacles and/or increased risk to the proposed design and construction.

Part II of the OM is employed by geoprofessionals to help reduce the risk associated with unidentified and/or unexpected subsurface conditions. Geoprofessionals accomplish Part II of the OM by providing construction oversight (e.g., construction observation, inspection, and testing). Part II of the OM is a valuable service, as the geoprofessional of record is available if unexpected conditions are encountered during the construction process (e.g., during excavation, fill placement, etc.) to make timely assessments of the unexpected conditions and modify their design and construction recommendations accordingly; thus reducing considerable cost resulting from potential construction delays and reducing the risk of future problems resulting from inappropriate design and construction practices.

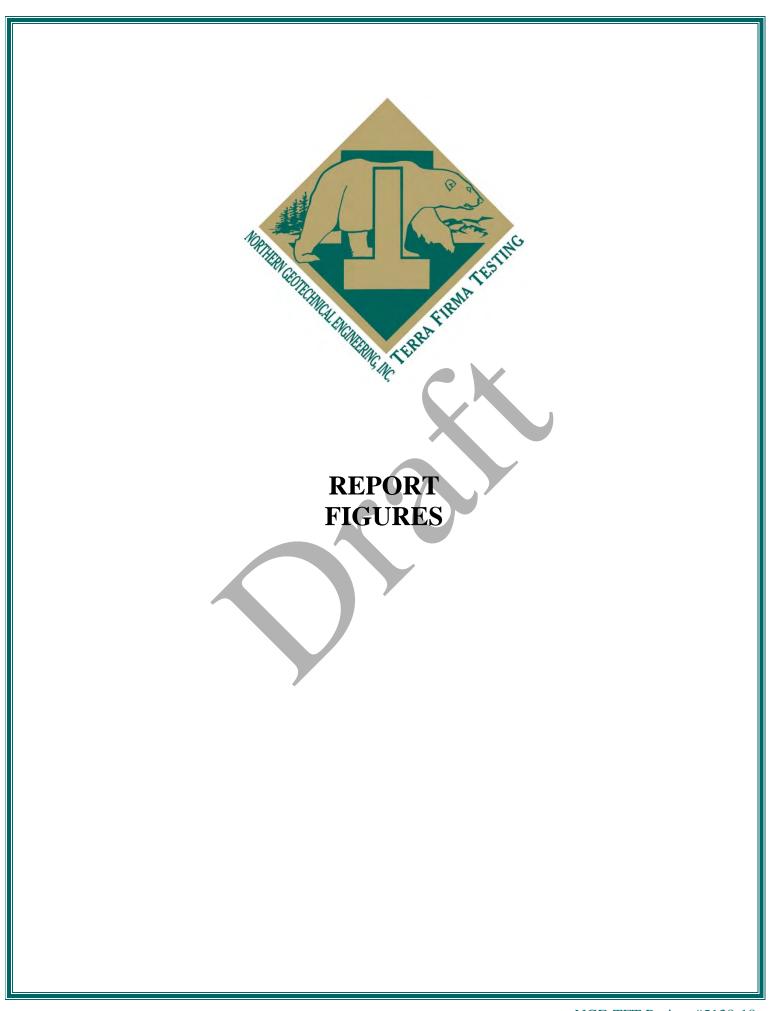
Oftentimes, a client may be persuaded to use an alternative geoprofessional firm to conduct Part II of the OM for a given project; as some geoprofessional firms offer the same services at discounted prices in order to help them obtain the overall construction materials engineering and testing (CoMET) commission. The geoprofessional industry as a whole recommends against this practice. An alternative geoprofessional firm cannot provide the same level of service as the geoprofessional of record. The geoprofessional of record has (amongst other things) a unique

familiarity with the project including; an intimate understanding of the subsurface conditions, the proposed design, and the client's unique concerns and needs, as well as other factors that could impact the successful completion of a construction project. An alternative geoprofessional firm is not aware of the inferences made and the judgment applied by the geoprofessional of record in developing the provisional recommendations, and may overlook opportunities to provide extra value during Part II of the geoprofessional service.

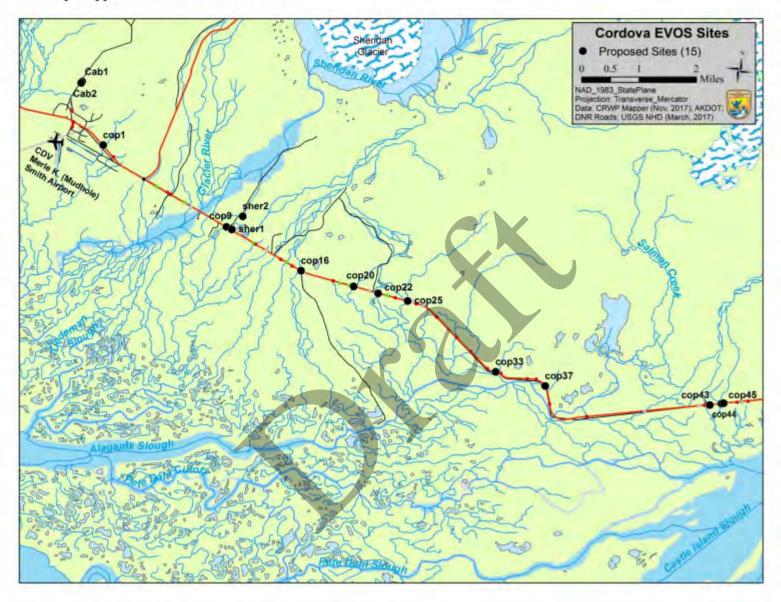
Clients that prevent the geoprofessional of record from performing a complete service can be held solely liable for any complications stemming from engineering omissions as a result of unidentified conditions. The geoprofessional of record may not be liable for any resulting complications that occur, as the geoprofessional of record was not able to complete their services. Furthermore, the replacement geoprofessional firm may also be found to have no liability for the same reasons.

We are available at any time to discuss the OM in more detail, or to provide you with an estimate for any additional construction observation and testing services required.

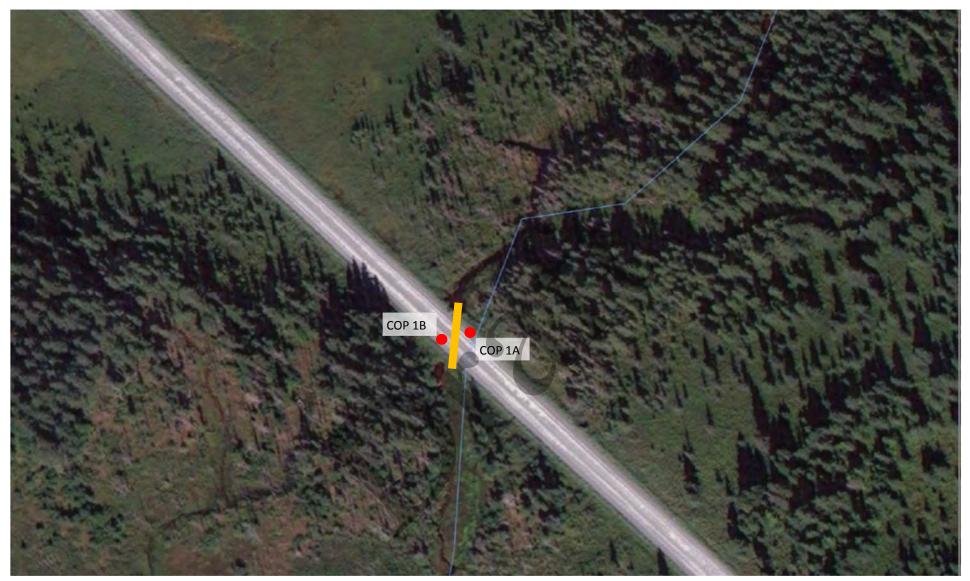
9.0 CLOSURE


We (Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing) prepared this report exclusively for the use BCE and their consultants. for use in the design and construction of the proposed improvements. We should be notified if significant changes are to occur in the nature, design, or location of the proposed improvements in order that we may review our conclusions and recommendations that we present in this report and, if necessary, modify them to satisfy the proposed changes.

This report should always be read and/or distributed in its entirety (including all figures, exploration logs, appendices, etc.) so that all of the pertinent information contained within is effectively disseminated. Otherwise, an incomplete or misinterpreted understanding of the site conditions and/or our engineering recommendations may occur. Our recommended best practice is to make this report accessible, in its entirety, to any design professional and/or contractor working on the project. Any part of this report (e.g., exploration logs, calculations, material values, etc.) which is presented in the design/construction plans and/or specifications for the project should have an adequate reference which clearly identifies where the report can be obtained for further review.


Due to the natural variability of earth materials, variations in the subsurface conditions across the project site may exist other than those we identified during the course of our geotechnical assessment. Therefore, a qualified geotechnical engineer, geologist, and/or special inspector be on-site during construction activities to provide corrective recommendations for any unexpected conditions revealed during construction (see our discussion of the Observational Method in Section 8.0 of this report for more detail). Furthermore, the construction budget should allow for any unanticipated conditions that may be encountered during construction activities.

We conducted this evaluation following the standard of care expected of professionals undertaking similar work in the State of Alaska under similar conditions. No warranty, expressed or implied, is made.



Location Map Copper River Watershed and Delta

	Northern	GEOTE	CHNICAL	ENGINEERING,	INC.
-	,	TERRA	FIRMA 7	TESTING	

FIGURE TITLE: SITE OVERVIEW	
PROJECT NAME: USFWS FISH PASSAGE IMPROVEMENTS	PROJECT ID: 5638-18
PROJECT LOCATION: CORDOVA, ALASKA	FIGURE NUMBER:

SITE COP 1: N60.49168, W145.45538 BORING IN ROAD SHOULDER OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE: SITE COP 1	
PROJECT NAME: USFWS FISH PASSAGE IMPROVEMENTS	PROJECT ID: 5638-18
PROJECT LOCATION: CORDOVA, ALASKA	FIGURE NUMBER:

SITE COP 9: N60.4743, W145.3881 BORING IN ROAD SHOULDER OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

	10
FIGURE TITLE: SITE COP 9	
	PROJECT ID: 5638-18
PROJECT LOCATION: CORDOVA, ALASKA	FIGURE NUMBER:

SITE COP 20: N60.4630, W145.3207 BORING IN ROAD SHOULDER OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location



NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE: SITE COP 20
SHE COP 20
PROJECT NAME: USFWS FISH PASSAGE IMPROVEMENTS
PROJECT LOCATION: CORDOVA, ALASKA

PROJECT ID: 5638-18
FIGURE NUMBER: 4

SITE COP 22: N60.4620, W145.3081 **BORING IN ROAD SHOULDER** OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 22
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE COP 25: N60.46078, W145.2444 **BORING IN ROAD SHOULDER OWNED BY: ADOT**

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 25
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE COP 33: N60.4453, W145.2444 **BORING IN ROAD SHOULDER** OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 33
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS PROJECT LOCATION: CORDOVA, ALASKA

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE COP 43: N60.4425, W145.1342 **BORING IN ROAD SHOULDER OWNED BY: ADOT**

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 43
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE COP 44: N60.443, W145.1285 BORING IN ROAD SHOULDER OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 44
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE COP 45: N60.44318, W145.12714 **BORING IN ROAD SHOULDER** OWNED BY: ADOT

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE COP 45
PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

SITE SHER 1: N60.47399, W145.38571 **BORING IN ROAD SHOULDER** OWNED BY: USFS?/ADOT?

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

FIGURE TITLE:
SITE SHER 1

PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

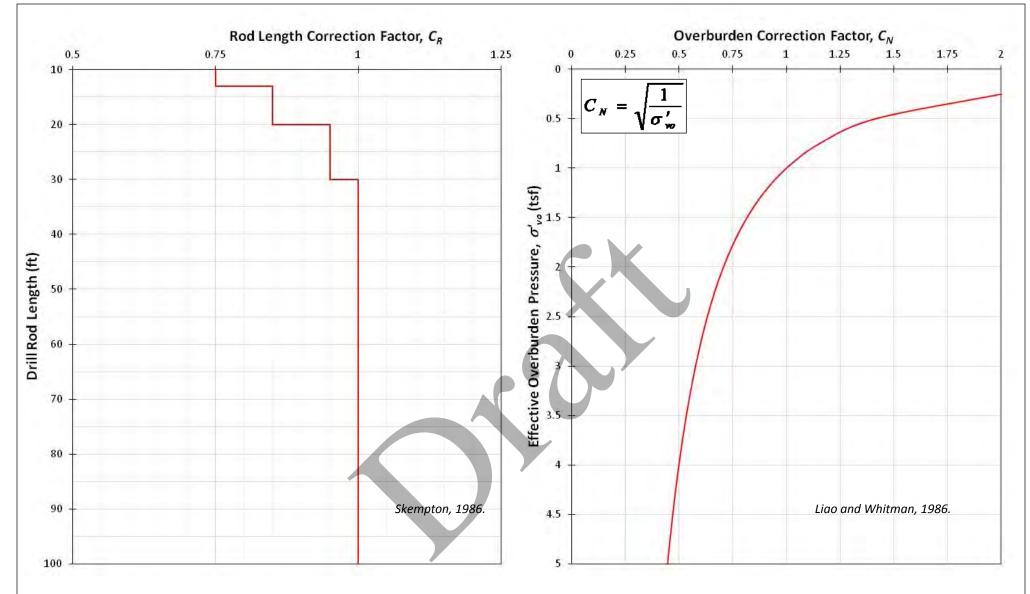
PROJECT ID: 5638-18 FIGURE NUMBER:

SITE CAB 2: N60.50665, W145.46990 **BORING IN ROAD SHOULDER** OWNED BY: USFS?/ CORDOVA?

= Approx. Culvert Location

= Approx. Borehole Location

NORTHERN GEOTECHNICAL ENGINEERING, INC.
TERRA FIRMA TESTING

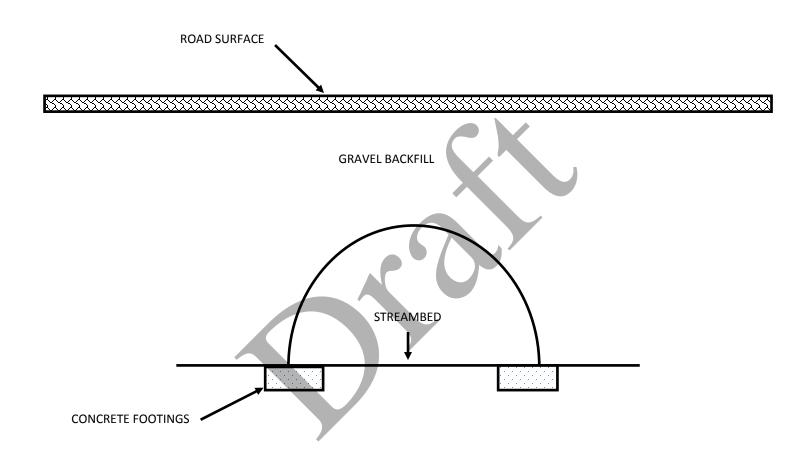

FIGURE TITLE:
SITE CAB 2

PROJECT NAME:
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT ID: 5638-18 FIGURE NUMBER:

PROJECT LOCATION: CORDOVA, ALASKA

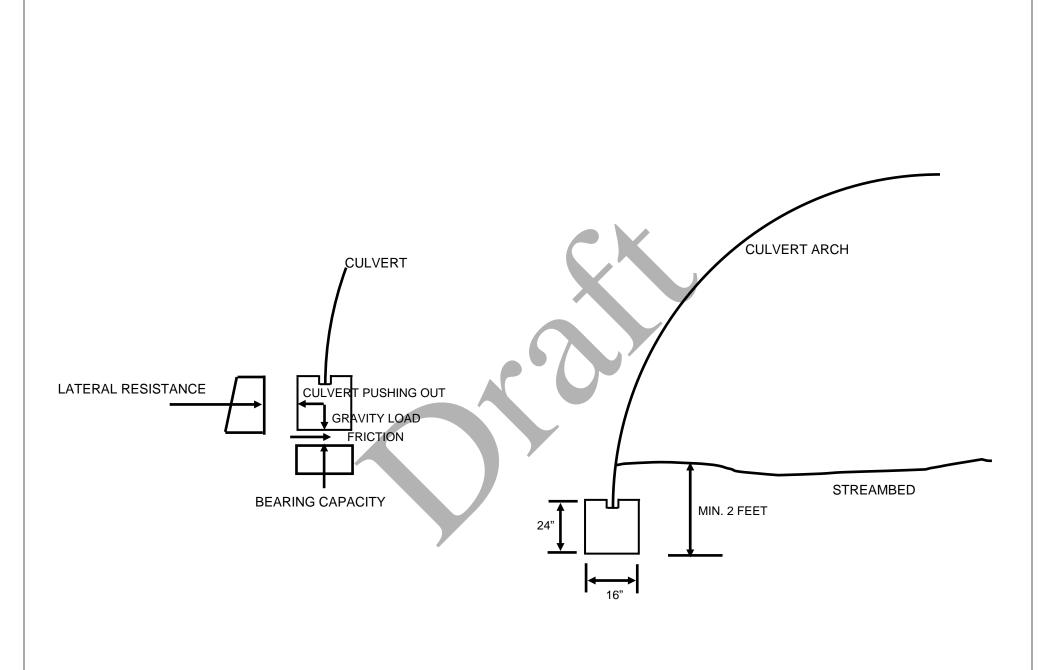
12


Notes:

- Overburden correction factor is used only for cohesionless soils
- C_N is the ratio of the measured blow count to what the blow count would be at an overburden pressure of 1 ton/ft²
- σ'_{vo} is the effective overburden pressure at the point of measurement (ton/ft²)

NORTHERN GEOTECHNICAL ENGINEERING, INC. TERRA FIRMA TESTING

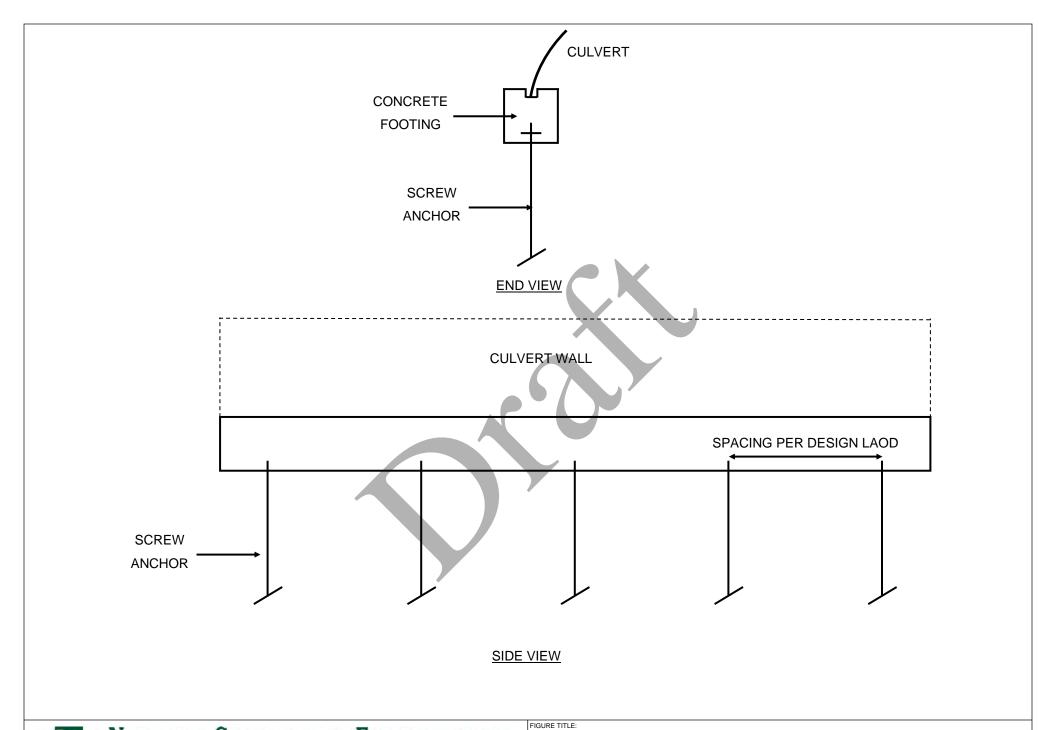
BLOW COUNT CORRECTIONS	
ROJECT NAME: JSFWS FISH PASSAGE IMPROVEMENTS	PROJECT ID: 5138-18
ROJECT LOCATION: CORDOVA, ALASKA	FIGURE NUMBER:



- 1	FIGURE TITLE: CONCEPTUAL CULVERT DESIGN - BOX CULVERTS	
- 1	PROJECT NAME: USFWS FISH PASSAGE IMPROVEMENTS	PROJECT ID: 5138-18

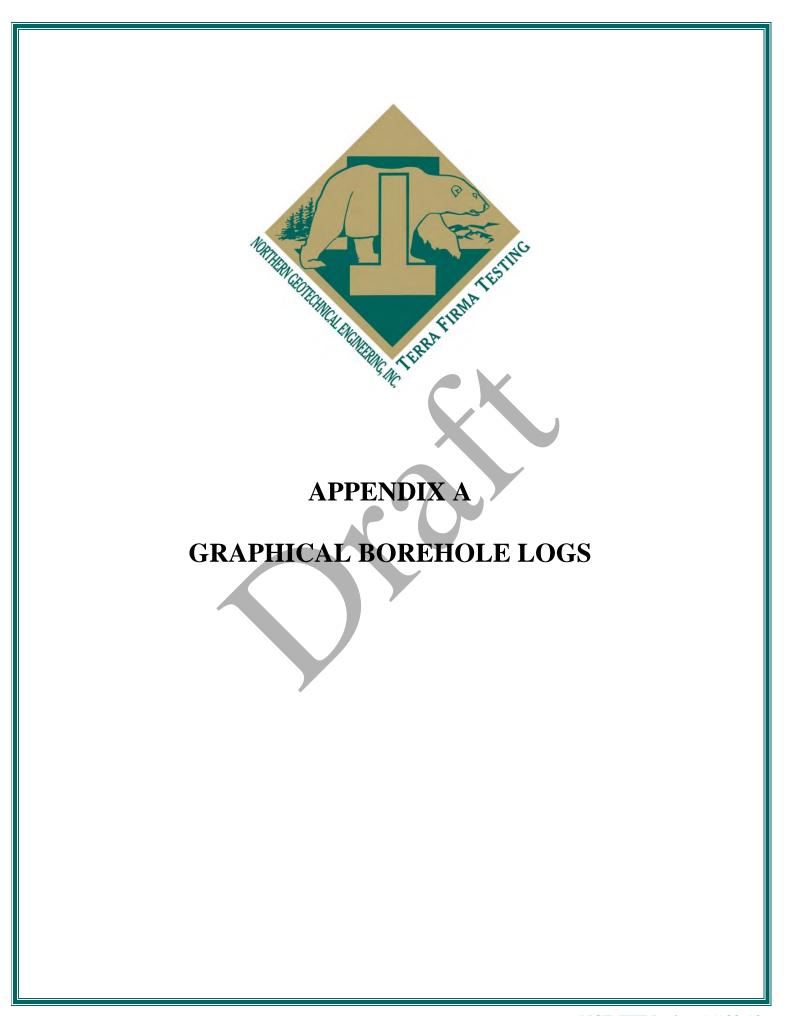
USFWS FISH PASSAGE IMPROVEMENTS

PROJECT LOCATION:
COPPER RIVER HWY, CORDOVA, ALASKA


FIGURE NUMBER:
14

	NORTHERN GEOTECHNICAL ENGINEERING, INC.
-	TERRA FIRMA TESTING

FIGURE TITLE:	
FIGURE TITLE.	
LOOTING DETAIL	
FOOTING DETAI	ᆫ


PROJECT NAME:	PROJECT ID:
USFWS FISH PAGGAGE IMPROVEMENTS	5138-18
PROJECT LOCATION:	FIGURE NUMBER:
COPPER RIVER HWY, CORDOVA, ALASKA	15

	Northern	G EOTE	CHNICAL	ENGINEERING,	INC.
-	,	TERRA	FIRMA 7	ESTING	

PROPOSED SCREW ANCHOR FOUNDATION SUPPORT	
DDO JECT NAME.	

PROJECT NAME:	PROJECT ID:
USFWS FISH PASSAGE IMPROVEMENTS	5138-18
PROJECT LOCATION:	FIGURE NUMBER:
COPPER RIVER HWY, CORDOVA, ALASKA	16

EXPLORATION COP

(PLOR (PLOR DGGE! ATE CO ROUNI	RATIO RATIO D BY: OMPL D ELE JNDW	N CON N MET S. M ETED EVATION ATER	CCoy	Hollov Hollov 14/2018	wn	
CPLOR COGGET ATE CO CROUNI GROU EATHI	RATIO D BY: OMPL D ELE JNDW ER CO	S. M. ETED EVATION ATER ONDIT	CCoy : 10/1 DN: N (): N	Hollow 14/2018 lot Know	w Stem Auger	
OGGEI ATE CO ROUNI GROU EATHI	D BY: OMPL D ELE JNDW ER CO	S. M. ETED EVATION ATER DNDIT	: 10/1 DN: N (): N	14/2018 lot Knov	wn	
GROUNIED SAMPLE ID	OMPL D ELE JNDW ER CO	ETED EVATION ATER	: 10/1 ON: N (): N ONS:	14/2018 lot Knov /A	wn	
GROUNI GROUNI EATHI	D ELE JNDW ER CC	EVATION TO STATE TO S	ON: <u>N</u> (): <u>N</u> ONS:	lot Knov	wn	
EATHIE ID SAMPLE ID	JNDW ER CO	ATER	(): <u>N</u> IONS:	/A		
EATHE ID SAMPLE ID	ER CC	NDIT	ONS:			
ELD SAMPLE ID	(in)		ŀ	Clear,		
FIELD SAMPLE ID		SW	į	_	50°F	
	REC	FIELD BLOWS	∞(N))	LAB SAMPLE ID	LAB RESULTS	REMARKS/NOTES
S1	7	5 4 5	15	S1	\$1 MC = 2.5% 49.3% gravel, 45.4% sand,	Rock in sampler.
S2	8	4 3 1	5	S2	S2 MC = 6.0% 46.3% gravel, 48.3% sand,	
S3	6	10 5 4	10	S3	S3 MC = 8.5% 37.0% gravel, 58.6% sand,	Some fines washed out.
S4	9	6 6 6	13	S4	4.4% silt P0.02 = 2.3% FC = NFS S4 MC = 12.0%	
S5	5	10 5 3	9	S5	OC = 2.0% S5 MC = 12.5%	
S6	6	6 4 4	9	S6	S6 MC = 11.1%	
S7	10	11 5 5	11	S7	S7 MC = 24.9% P200 = 73.2%	
	\$2 \$3 \$4 \$5 \$6	S2 8 S3 6 S4 9 S5 5 S6 6	\$2 8 4 3 1	\$2 8 4 5 3 1	\$2 8 4 5 \$2 \$3 1 \$1 \$2 \$3 \$4 \$5 \$4 \$9 \$6 \$6 \$6 \$9 \$5 \$3 \$3 \$5 \$4 \$4 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5 \$5	MC = 2.5% 49.3% gravel, 45.4% sand, 5.3% silt S2

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 1A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

PHOTO LOG EXPLORATION COP 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 1A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NAME USFWS Fish Passage Improvements

PHOTO LOG

EXPLORATION COP 1A

CLIENT Bratslavsky Consulting Engineers, Inc.
PROJECT NUMBER 5138-18

Exploration COP 1A Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 1A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration COP 1A Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP

								. , .,	
-TF	T PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT N	UMBER	: 513	38-18				
JEC	CT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONT	RACTO	R:_Dis	cover	y Drilli	ing,	Inc.	
PLOR	RATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METH	OD: _H	ollow S	Stem A	Auger			
MPLI	NG METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McC	Coy						
TE S	TARTED: 10/14/2018	DATE COMPLETED:	10/14/2	018					
PLOR	RATION LOCATION: See report Figure 1 and Figure 2	GROUND ELEVATION	I: Not k	(nown					
ROL	UNDWATER (ATD): Approx. 7.0 ft bgs	▼GROUNDWATER ()	: <u>N/A</u>						
LOR	RATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIO	NS: <u>Cl</u>	ear, 50)°F				
GRAPHIC LOG FROZEN SOII S	MATERIAL DESCRIPTION	CX	SAMPLE TYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) ₆₀	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS
	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), dense damp to wet	se, brown - gray,	U						
	SILTY SAND WITH GRAVEL (SM), medium dense, brown - gray,	damp to wet	S1	5	6 7 9	26		S1	S1 MC = 8.5 46.8% gra 43.9% sal 9.3% sil
	∇		S2	6	15 7 6	17		S2	S2 MC = 4.1 21.5% gra 63.4% sa 15.1% s
	WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), loose	e, gray, wet	S3	12	11 4 5	10		S3	S3 MC = 9.3 38.2% gra 52.7% sa 9.1% si
	SANDY SILT (ML), trace organics, stiff, gray, wet		S4	12	6 5 4	10		S4	P0.02 = 6 FC = F2 S4 MC = 25.
	POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), loc dense, dark gray, wet	ose to medium	S5	5	3 2 5	8		S5	0.8% grav 36.0% sa 63.2% s P0.02 = 24 FC = FA
	Trace organics		S6	9	5 7 5	13		S6	S5 MC = 12. S6 MC = 11.
	SILT (ML), stiff, gray, wet		V S7	9	9 5	13		S7	S7 MC = 29.
	Bottom of borehole at 21.5 ft bgs.		/\		6				P200 = 87

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 1B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

PHOTO LOG EXPLORATION COP 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 1B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 1B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER _5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 1B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NU	MBER	: _513	8-18				
PROJECT LOCATION: Copper River Hwy, Cordova, AK	RACTOR: Discovery Drilling, Inc.							
EXPLORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHO	D : <u>H</u>	ollow S	Stem A	Auger			
SAMPLING METHOD: _Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCo	ру						
DATE STARTED : 10/14/2018	DATE COMPLETED: _1	0/14/2	018					
EXPLORATION LOCATION: See report Figure 1 and Figure 5	GROUND ELEVATION:	Not k	(nown					
∑ GROUNDWATER (ATD): _ Approx. 7.0 ft bgs	▼GROUNDWATER ():	N/A						
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	S : <u>Cle</u>	ear, 45	s°F				
HTGO SOLIS MATERIAL DESCRIPTION MATERIAL DESCRIPTION O	SAMPI F TYPE	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) 60	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS
POORLY GRADED GRAVEL WITH SAND (GP), dense, gray - bro	own, moist to wet	U	-10				0.1	24
5 POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), m		S1	12	5 10 10	33		S1	S1 MC = 7.7% 50.4% gravel, 45.2% sand, 4.4% silt
- brown, moist to wet	edium dense, gray	S2	11	13 8 6	18		S2	S2 MC = 3.8% 39.4% gravel, 53.2% sand, 7.4% silt
		S3	10	4 5 6	13		S3	S3 MC = 6.0%
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), med brown, moist to wet		S4	9	7 8 15	25		S4	S4 MC = 6.8% 50.1% gravel, 44.3% sand,
POORLY GRADED SAND WITH GRAVEL (SP), medium dense, of	lark gray, wet	S5	6	10 10 6	18		S5	5.6% silt P0.02 = 4.1% FC = S1 S5 MC = 7.0%
SANDY SILT (ML), trace organics, medium stiff to soft, gray, wet		S6	7	3 2 3	5		S6	S6 MC = 30.7% P200 = 57.5%
		S7	9	2 1 2	3		S7	S7 MC = 32.4%
Bottom of borehole at 21.5 ft bgs.								

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 9A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 9A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 9A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 9A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

PHOTO LOG EXPLORATION COP 9A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9A Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 9A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 9A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration COP 9A Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 9B

WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), dense to medium dense, brown - gray, moist to wet St. 1	*A**	PAGE I OF I										
EXPLORATION EQUIPMENT: Truck-mounted CME 75 SAMPLING METHOD: Modified Spit-spoon w/ 340lb autohammer DATE STARTED: 10/14/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 5 GROUNDWATER (ATD): Approx. 9.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings WEATHER CONDITIONS: Clear, 46°F WEATHER CONDITIONS: Clear, 46°F WEATHER CONDITIONS: Clear, 46°F WEATHER CONDITIONS: Clear, 46°F REMARKS/NOTES SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained Tan/brown organic lens EXPLORATION METHOD: Hollow Stem Auger LOGGED BY: S. McCoy DATE COMPLETED: 10/14/2018 GROUND LEEVATION: Not Known YEROUNDWATER (I: 10/14/2018) SEXPLORATION METHOD: Hollow Stem Auger LOGGED BY: S. McCoy DATE COMPLETED: 10/14/2018 GROUND LEEVATION: Not Known YEROUNDWATER (I: 10/14/2018) WEATHER CONDITIONS: Clear, 46°F REMARKS/NOTES REMARKS/NOTES 1 14	NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: 5138-18										
SAMPLING METHOD: Modified Spiti-spoon w/ 340lb autohammer	PROJECT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.										
DATE STARTED; 10/14/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 5 ▼ GROUNDWATER (ATD): Approx 9.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings WEATHER CONDITIONS: Clear, 45°F MATERIAL DESCRIPTION WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM). dense to medium dense, brown - gray, moist to wet WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM). dense to medium dense, brown - gray, moist to wet SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained Tan/brown organic lens DATE COMPLETED: 10/14/2018 GROUND ELEVATION: Not Known ▼ GROUNDWATER (I): N/A WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F REMARKS/NOTES REMARKS/NOTES REMARKS/NOTES REMARKS/NOTES S1 14 7 40 51 MC 2.5% 48.8%; gravel, 6.1%; silt MC 2.5%; MC = 3.5%; Send, 6.1%; silt MC = 3.7%; 6.1%; silt N/A = 3.5%; sand, 6.1%	EXPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger										
EXPLORATION LOCATION: See report Figure 1 and Figure 5 GROUNDWATER (ATD): _Approx. 9.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F WEATHER CONDITIONS: Clear, 45°F REMARKS:NOTES REMARKS:NOTES REMARKS:NOTES S1 14 7 40 S1 S1 S2	SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy										
Variable Property	DATE STARTED: 10/14/2018	DATE COMPLETED: 10/14/2018										
### REMARKS NOTES Second Completion Backfilled with cuttings WEATHER CONDITIONS: Clear, 45°F	EXPLORATION LOCATION: See report Figure 1 and Figure 5	GROUND ELEVATION: Not Known										
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), dense to medium dense, brown - gray, moist to wet	☐ GROUNDWATER (ATD): _Approx. 9.0 ft bgs	▼GROUNDWATER (): N/A										
WELL GRADED GRAVEL WITH SILT AND SAND (CW-GM), dense to medium dense, brown - gray, moist to wet S1	EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Clear, 45°F										
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), dense to medium dense, brown - gray, moist to wet St. 14		SAMPLE TYPE FIELD SAMPLE ID RECOVERY (in) FIELD BLOWS (N ₁) ₆₀ SAMPLE INT. COLLECT LAB SAMPLE ID LAB SAMPLE ID SAM										
12	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM),											
Sility Sand (SM), medium dense to loose, gray, wet, fine to medium grained Sility Sand (Sility Sand) Sility		MC = 2.5% 48.6% gravel, 45.3% sand, 6.1% silt										
SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SS 13 16 17 SS SS MC = 24.5% FC = S1 SS MC = 24.3%		32 6 10 21 32 MC = 3.8% 8 MC = 3.8% 56.4% gravel, 35.5% sand, 8.1% silt										
SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SILTY SAND (SM), medium dense to loose, gray, wet, fine to medium grained SS 13 16 17 SS POLE 4.5% FC = S1 S5 MC = 24.3% S6 12 6 7 S6 S6 MC = 19.3% Tan/brown organic lens S7 10 3 3 S7 S7 MC = 38.3%		8 MC = 3.7%										
medium grained S5 13 16 17 S5 P0.02 = 4.5% FC = S1 S5 MC = 24.3% S6 12 6 7 S6 S6 MC = 19.3% S7 10 3 3 S7 S7 MC = 38.3% S7 MC = 38.3% S8 S9 S1 S5 MC = 24.5% FC = S1 S5 MC = 24.5% S8 S9 S1 S1 S2 S1 S2 S3 S4 S4 S4 S4 S4 S4 S4		19 MC = 6.4% 50.5% gravel, 42.8% sand,										
Tan/brown organic lens S6 12 6 7 S6 S6 MC = 19.3%		S5 13 16 17 S5 P0.02 = 4.5% 8 FC = S1 S5										
Tan/brown organic lens S7 10 3 3 S7 S7 MC = 38.3%	15 1 1 1 1 1 1 1 1 1	3 MC = 19.3%										
Tan/brown organic lens S7 10 3 3 S7 S7 MC = 38.3%												
	Tan/brown organic lens	2 MC = 38.3%										
Bottom of borehole at 21.5 ft bgs.	Bottom of borehole at 21.5 ft bgs.											

PHOTO LOG EXPLORATION COP 9B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 9B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NAME USFWS Fish Passage Improvements

PHOTO LOG

EXPLORATION COP 9B

CLIENT Bratslavsky Consulting Engineers, Inc.
PROJECT NUMBER 5138-18

Exploration COP 9B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 9B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION COP 9B

PHOTO LOG

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 9B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 9B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 9B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 20A

	The state of the s								I AGE I OI I					
NGE-TF	T PROJECT NAME: USFWS Fish Passage Improvements	N	GE-TI	T PR	OJEC	T NUM	BER:	5138-18						
PROJEC	CT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.												
EXPLOR	RATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHOD: _Hollow Stem Auger												
SAMPLI	NG METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy												
DATE S	TARTED: 10/14/2018													
EXPLOR	RATION LOCATION: See report Figure 1 and Figure 6													
$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	UNDWATER (ATD): _ Approx. 5.0 ft bgs	Ţ	GRO	UNDV	/ATEF	R (): _N	I/A							
EXPLOR	RATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Clear, 45°F												
O DEPTH (ft) GRAPHIC LOG EROZEN SOILS	MATERIAL DESCRIPTION	SAMPLE TYPE	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS		SAMPLE INT. COLLECT LAB SAMPLE ID	LAB RESULTS	REMARKS/NOTES					
	POORLY GRADED GRAVEL WITH SAND (GP), medium dense, brown - gray, moist													
		X	S1	11	5 5 5	17	S1	S1 MC = 2.4% 71.0% gravel, 24.9% sand, 4.1% silt						
5 7	▼ WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), medium dense, brown - gray, moist	X	S2	8	6 8 8	21	S2	S2 MC = 6.4% 49.8% gravel,						
 	WELL GRADED SAND WITH GRAVEL (SW), medium dense, dark gray - brown, wet	X	S3	7	8 5 4	11	S3	43.5% sand, 6.7% silt S3 MC = 8.2%						
10	WELL GRADED GRAVEL WITH SAND (GW), loose, dark gray, wet	X	S4	6	11 3 2	6	S4	34.0% gravel, 61.1% sand, 4.9% silt P0.02 = 3.1% FC = S2						
		0	S5	0	6 2 1	N/A	S5	S4 MC = 5.9% 69.2% gravel, 29.8% sand, 1.0% silt						
15		X	S6	4	2 0 1	1	S6	S6 MC = 10.1%						
20	Bottom of borehole at 20.0 ft bgs.								Approx. 2' of sand					
	- -								heave. Sampler stuck in auger, no sample attempted.					

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 20A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 20A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 20A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 20A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PHOTO LOG EXPLORATION COP 20A

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

EXPLORATION COP 20B

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT N	UMBER	k: <u>513</u>	38-18						
PROJECT LOCATION: Copper River Hwy, Cordova, AK										
EXPLORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger									
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McC	Соу								
DATE STARTED: 10/14/2018	DATE COMPLETED:	10/14/2	2018							
EXPLORATION LOCATION: See report Figure 1 and Figure 6	GROUND ELEVATION	: <u>Not I</u>	Known							
☐ GROUNDWATER (ATD): Approx. 6.3 ft bgs	▼GROUNDWATER ()	N/A								
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	NS: <u>C</u>	ear, 4	5°F						
MATERIAL DESCRIPTION O O O O O O O O O O O O	CX	SAMPLE TYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	09 (\n')	SAMPLE INT. COLLECT	LAB SAMPLE ID	LABRESULTS		
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), medi loose, gray - brown, moist	um dense to	V								
		S1	12	4 4 3	12		S1	S1 MC = 3.3%		
		S2	10	8 4 3	9		S2	S2 MC = 5.7% 39.6% gravel, 51.5% sand, 8.9% silt		
POORLY GRADED SAND WITH GRAVEL (SP), medium dense, d		S3	9	10 6 5	13		S3	S3 MC = 9.1% 40.0% gravel, 55.3% sand,		
WELL GRADED GRAVEL WITH SAND (GW), loose to medium de wet, rounded gravel	ense, dark gray,	S4	8	13 5 4	10		S4	4.7% silt P0.02 = 2.6% FC = NFS S4 MC = 7.0%		
							S5	55.1% gravel, 42.1% sand, 2.8% silt P0.02 = 1.7% FC = PFS		
WELL GRADED SAND WITH GRAVEL (SW), loose to very loose, organic lens	dark gray, wet,	S6	8	5 3 6	9		S6	S5 MC = 9.5% S6 MC = 11.8% 34.8% gravel, 60.4% sand, 4.8% silt		
20 · · · ·		S7	8	8	4		S7	\$7 MC = 14 F0/		
		Λ		2 2				MC = 14.5%		
Bottom of borehole at 21.5 ft bgs.										

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 20B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 20B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 20B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 20B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 20B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 20B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 20B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 20B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 22A

	de .								I AGE I OI I
NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements			NGE-TFT PROJECT NUMBER: 5138-18						
PROJECT LOCATION: Copper River Hwy, Cordova, AK			EXPLORATION CONTRACTOR: Discovery Drilling, Inc.						
EXPLORATION EQUIPMENT: Truck-mounted CME 75		EXPLORATION METHOD: _Hollow Stem Auger							
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer		LOGGED BY: S. McCoy							
DATE STARTED: 10/13/2018			DATE COMPLETED: 10/13/2018						
EXPLORATION LOCATION: See report Figure 1 and Figure 7		GROUND ELEVATION: Not Known							
☑ GROUNDWATER (ATD): Approx. 7.0 ft bgs		▼GROUNDWATER (): N/A							
EXPLORATION COMPLETION: Backfilled with cuttings		WEATHER CONDITIONS: Overcast, 45°F							
O DEPTH (ft) (RX) GRAPHIC LOG EROZEN SOILS	MATERIAL DESCRIPTION	SAMPLE TYPE	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	9	SAMPLE INT. COLLECT	LAB RESULTS	REMARKS/NOTES
	WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), medium dense to loose, gray - brown, moist								
		X	S1	7	16 4 5	15	S1	S1 MC = 4.1%	
5	WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), medium dense, grayish brown to brown, wet to saturated WELL GRADED GRAVEL WITH SAND (GW), medium dense, dark gray, wet	X	S2	9	5 3 2	7	S2	S2 MC = 4.0% 44.7% gravel, 49.5% sand,	
		X	S3	12	12 7 9	18	S3	5.8% silt S3 MC = 5.8% 56.0% gravel, 38.0% sand, 6.0% silt	avel, avel, ilit 5% avel, and, ilit .2%
		X	S4	10	18 10 7	18	S4	S4 MC = 6.6% 51.1% gravel, 43.4% sand,	
		X	S5	8	18 9 9	20	S5	5.5% silt P0.02 = 3.2% FC = \$1 S5 MC = 5.1%	
		X	S6	9	20 8 9	17	S6	S6 MC = 4.1% 51.8% gravel, 47.2% sand, 1.0% silt	
20	Bottom of borehole at 20.0 ft bgs.								Approx. 5' of sand
Bottom of borenoie at 20.0 it bys.								heave, no sample collected.	

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 22A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 22A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

PHOTO LOG EXPLORATION COP 22A

CLIENT Bratslavsky Consulting Engineers, Inc.

Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 22A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 22A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22A Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 22A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

EXPLORATION COP 22B

GE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: 5138-18								
ROJECT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.								
XPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger								
AMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy								
ATE STARTED: 10/14/2018	DATE COMPLETED: 10/14/2018								
XPLORATION LOCATION: See report Figure 1 and Figure 7	GROUND ELEVATION: Not Known								
GROUNDWATER (ATD): Approx. 6.5 ft bgs	▼GROUNDWATER (): N/A								
XPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Clear, 40°F								
MATERIAL DESCRIPTION BY SOILS WATERIAL DESCRIPTION	SAMPLE TYPE FIELD SAMPLE ID FIELD BLOWS (N ₁) ₀₀ SAMPLE INT. COLLECT LAB SAMPLE ID LAB RESULTS LAB RESULTS								
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), medium dense, gray - brown, moist to wet									
	S1 8 3 12 S1 S1 MC = 7.1% 52.7% gravel, 41.3% sand, 800 silt, 800								
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), loose to medium dense, moist to wet	S2 8 6 8 S2 S2 MC = 8.7% 36.3% gravel, 54.0% sand, 9.7% silt								
	S3 11 5 14 S3 S3 MC = 7.0% 41.5% gravel, 52.2% sand, 6.3% silt								
WELL GRADED GRAVEL WITH SAND (GW), medium dense, dark gray, wet	S4 9 17 13 S4 P0.02 = 4.3% FC = S2 S4 MC = 6.4%								
POORLY GRADED SAND WITH GRAVEL (SP), dense to loose, dark gray	S5 6 13 27 S5 4.0% silt P0.02 = 2.6% FC = PFS								
	S6 6 5 10 S6 MC = 10.4% S6 MC = 9.1%								
Fine sand lens	S7 5 5 18 S7 S7 MC = 9.1%								
Bottom of borehole at 21.5 ft bgs.									

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 22B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 22B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 22B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 22B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 22B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 22B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 22B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 22B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration COP 22B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 25A

NGE-TF	FT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT N	UMBER	: _513	8-18							
PROJE	CT LOCATION: Copper River Hwy, Cordova, AK	r River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.										
EXPLORATION EQUIPMENT: Truck-mounted CME 75 EXPLORATION METHOD: Hollow Stem Auger												
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer LOGGED BY: S. McCoy												
DATE S	STARTED: 10/13/2018	DATE COMPLETED: 10/13/2018										
EXPLO	RATION LOCATION: See report Figure 1 and Figure 8											
∑ GRO	DUNDWATER (ATD): _ Approx. 5.0 ft bgs	▼GROUNDWATER ()	N/A									
EXPLO	RATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	NS : _Ov	ercas	t, 45°F	:						
O (ft) GRAPHIC LOG	MATERIAL DESCRIPTION WATERIAL DESCRIPTION	CX	SAMPLE TYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) ₆	SAMPLE IN I. COLLECT	LAB RESULTS				
	WELL GRADED GRAVEL WITH SAND (GW), loose, brown - gray	r, damp	V		_							
5		loose damp	S1	7	7 3 3	10	S1	S1 MC = 3.4% 53.1% gravel, 42.8% sand, 4.1% silt				
			S2	7	3 1 1	3	S2	S2 MC = 4.7% 39.7% gravel, 54.8% sand,				
· · · · · · · · · · · · · · · · ·	WELL GRADED SAND WITH GRAVEL (SW), loose, gray - brown	, wet	S3	5	6 3 5	10	S3	5.5% silt S3 MC = 8.1% 44.2% gravel, 54.6% sand,				
10	WELL GRADED GRAVEL WITH SAND (GW), medium dense, grawashed	y - brown, wet,	S4	4	20 8 8	17	S4	1.2% silt P0.02 = 0.9% FC = NFS S4 MC = 3.7%				
			S5	6	10 3 4	8	S5	S5 MC = 6.8% 52.2% gravel, 46.1% sand,				
15 / 	POORLY GRADED SAND (SP), some gravel, medium dense, gracoarse grained	y, wet, medium to	S6	9	6 5 5	11	S6	1.7% silt S6 MC = 13.1%				
20	SAND WITH SILT AND GRAVEL (SP-SM), medium dense, gray -	brown, wet										
	Bottom of borehole at 21.5 ft bgs.		S7	8	9 5 8	15	S7	S7 MC = 8.8% P200 = 10.6%				
	Sollom of Botonolo at 2 1.0 ft bgg.											

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 25A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 25A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

Telephone: 907-344-5934 Fax: 907-344-5993

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

PROJECT LOCATION Copper River Hwy, Cordova, AK

PHOTO LOG

EXPLORATION COP 25A

Exploration COP 25A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 25A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 25A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25A Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 25A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 25A

CLIENT Bratslavsky Consulting Engineers, Inc.

Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration COP 25A Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 25B

NGE-1	FFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NU	MBER	513	8-18						
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.					Inc.						
EXPLO	ORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger									
SAMP	LING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy									
DATE	STARTED: 10/13/2018	DATE COMPLETED: 10/13/2018									
EXPLO	ORATION LOCATION: See report Figure 1 and Figure 8										
oxtime GR	OUNDWATER (ATD): Approx. 7.0 ft bgs	_									
EXPLO	ORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	S : <u>Ov</u>	ercast	, Rain	, 45°F	:				
O DEPTH (ft) GRAPHIC		SAMPLE TYPE	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) 60	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS		
	POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), me very loose, brown - gray, moist to wet	dium dense to									
			S1	5	8 5 4	15		S1	S1 MC = 6.8%		
<u>5</u> 			S2	9	5 1 1	3		S2	S2 MC = 3.2% 38.1% gravel, 54.6% sand, 7.3% silt		
	POORLY GRADED SAND WITH GRAVEL TO WELL GRADED SAIGRAVEL (SP/SW), very loose to loose, moist to wet	ND WITH	S3	7	2 1 2	3		S3	S3 MC = 8.5% 39.8% gravel, 56.9% sand, 3.3% silt		
<u>10</u> 		<u> </u>	S4	7	4 2 4	6		S4	S4 MC = 8.1% 41.1% gravel, 56.8% sand,		
			S5	6	8 4 4	9		S5	2.1% silt P0.02 = 1.7% FC = NFS S5 MC = 8.1%		
15	POORLY GRADED SAND WITH SILT (SP-SM), gray, wet PEAT (PT), red - brown, fibrous, wet		S6	12	2	5		S6	S6		
1/2 \\ \\ \\ \\ \\ \\ \\ \\ - \\	POORLY GRADED SAND WITH SILT (SP-SM), loose, gray, wet				3 2				MC = 221.6%		
		<u> </u>	S7	9	3 5 4	10		S7	S7 MC = 11.5%		
	Bottom of borehole at 21.5 ft bgs.										

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 25B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 25B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 25B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 25B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 25B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 25B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

PHOTO LOG EXPLORATION COP 25B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER _5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 25B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION COP

PAGE 1 OF 1

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements **NGE-TFT PROJECT NUMBER:** 5138-18 **PROJECT LOCATION:** Copper River Hwy, Cordova, AK **EXPLORATION CONTRACTOR:** Discovery Drilling, Inc. **EXPLORATION EQUIPMENT:** Truck-mounted CME 75 **EXPLORATION METHOD:** Hollow Stem Auger SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer LOGGED BY: S. McCoy **DATE STARTED:** 10/13/2018 **DATE COMPLETED:** 10/13/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 9 **GROUND ELEVATION:** Not Known ☐ GROUNDWATER (ATD): __Approx. 7.0 ft bgs GROUNDWATER (): N/A **EXPLORATION COMPLETION:** Backfilled with cuttings WEATHER CONDITIONS: Overcast, Rain, 45°F SAMPLE INT. COLLECT Ξ LAB SAMPLE ID LAB RESULTS FIELD BLOWS FIELD SAMPLE I RECOVERY (N₁) MATERIAL DESCRIPTION WELL GRADED GRAVEL WITH SAND (GW), very loose, brown - gray, wet, angular S1 0 N/A 3 S2 9 3 S₂ 2 MC = 5.2%70.6% gravel, 25.6% sand, 3.8% silt SILTY SAND (SM), very loose, brown, wet, red-brown organic lens P0.02 = 2.1% S3 6 3 1 FC = PFS 0 MC = 71.2%11.2% gravel, POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), very loose, gray 40.9% sand, S4 2 brown, wet 47.9% silt 1 S4 MC = 20.7%(WOOD), decomposing wood debris S5 7 3 4 S₅ SILT (ML), very loose, gray, wet 3 MC = 34.0%P200 = 85.2% SILTY SAND (SM), loose, gray - brown, wet S6 4 S6 S6 2 6 MC = 24.1%Bottom of borehole at 21.5 ft bgs.

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 33A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 33A Sample S2 Sample Interval 10.0 - 11.5 ft bgs

Exploration COP 33A Sample S3 Sample Interval 12.5 - 14.0 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 33A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 33A Sample S4 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 33A Sample S5 Sample Interval 17.5 - 19.0 ft bgs

PHOTO LOG EXPLORATION COP 33A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration COP 33A Sample S6 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 33B

NGE-	TF	T PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: 5138-18									
PRO.	JE	CT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.							Inc.		
EXPL	OI	RATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger									
SAMI	PLI	NG METHOD: _Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy									
DATE	DATE STARTED: 10/13/2018											
EXPL	OI	RATION LOCATION: See report Figure 1 and Figure 9										
∑ GF	Ю.	UNDWATER (ATD): _ Approx. 7.0 ft bgs										
		RATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Overcast, Rain, 45°F									
	,			2	(in)			ECT	0			
O DEPTH (ft) GRAPHIC	FDOZENISONIS	MATERIAL DESCRIPTION	SAMPLE TYPE		RECOVERY (ii	FIELD BLOWS	(N ₁)	SAMPLE INT. COLL	LAB SAMPLE ID	LAB RESULTS	REMARKS/NOTES	
	<i>\\</i>	POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), brown - gray, moist		X								
5		SILTY SAND WITH GRAVEL (SM), loose, brown - gray, moist				>						
	6	Ţ.	S	1	6	6 3 2	7		S1	S1 MC = 10.1% 42.0% gravel, 45.2% sand, 12.8% silt		
10		GRAVEL WITH SILT AND SAND (GP-GM), loose, gray - brown, wet, angular gravel										
			S	2	6	6 3 2	5		S2	S2 MC = 8.6% 62.3% gravel, 29.9% sand,		
 		POORLY GRADED SAND WITH GRAVEL (SP), medium dense, gray - brown, wet, subrounded gravel	S	3	2	8 9 5	16		S3	7.8% silt P0.02 = 5.1% FC = S1 S3 MC = 21.5%		
15	7	SILTY SAND (SM), loose, gray, wet SILTY GRAVEL (GM), very loose, gray, wet	S	4	6	4 2 4	6		S4A S4B	S4A MC = 24.6% S4B		
		, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								MC = 20.2%	Maady dahaia ia	
	X		S	5	5	3 1 2	3		S5	S5 MC = 26.4% OC = 5.4%	Woody debris in sampler shoe.	
20		POORLY GRADED SAND WITH SILT (SP-SM), loose, gray, wet, angular gravel POORLY GRADED GRAVEL WITH SILT (GP-GM), loose,	S	6	12	2 3 6	9		S6	S6 MC = 19.2%		
101	IN	gray, wet Bottom of borehole at 21.5 ft bgs.	, ' '									

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 33B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 33B Sample S1 Sample Interval 5.0 - 6.5 ft bgs

Exploration COP 33B Sample S2 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 33B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 33B Sample S3 Sample Interval 12.5 - 14.0 ft bgs

Exploration COP 33B Sample S4 Sample Interval 15.0 - 16.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 33B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 33B Sample S5 Sample Interval 17.5 - 19.0 ft bgs

Exploration COP 33B Sample S6 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 43A

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION EQUIPMENT: Truck-mounted CME 75 SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer DATE STARTED: 10/12/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 10 □ GROUNDWATER (ATD): Approx. 3.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings	EXPLORATION EXPLOR	ON CO ON ME : S.N PLETE	NTRAC THOD:	:TOR:_I	5138-18 Discovery Drilling w Stem Auger								
EXPLORATION EQUIPMENT: Truck-mounted CME 75 SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer DATE STARTED: 10/12/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 10 \$\sqrt{Q}\$ GROUNDWATER (ATD): Approx. 3.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings	EXPLORATION LOGGED BY DATE COMPARE COM	ON ME	THOD:	Hollo	w Stem Auger								
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer DATE STARTED: 10/12/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 10 QROUNDWATER (ATD): Approx. 3.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings	LOGGED BY DATE COMP GROUND EI	: <u>S. N</u>	/IcCoy										
DATE STARTED: 10/12/2018 EXPLORATION LOCATION: See report Figure 1 and Figure 10 ☐ GROUNDWATER (ATD): Approx. 3.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings	DATE COMP	PLETE											
EXPLORATION LOCATION: See report Figure 1 and Figure 10 ☐ GROUNDWATER (ATD): Approx. 3.0 ft bgs EXPLORATION COMPLETION: Backfilled with cuttings	GROUND EI): <u>10/</u>	2/2010									
□ GROUNDWATER (ATD): _Approx. 3.0 ft bgs ■ EXPLORATION COMPLETION: _Backfilled with cuttings		EVATI		2/2010	DATE STARTED: 10/12/2018 DATE COMPLETED: 10/12/2018								
EXPLORATION COMPLETION: Backfilled with cuttings	▼ GROUND		ON : _N	ot Kno	wn								
<u>ω</u>		▼GROUNDWATER (): N/A											
	WEATHER (ATHER CONDITIONS: Overcast, Rain, 45°F											
MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION	SAMPLE TYPE FIELD SAMPLE ID RECOVERY (in)	FIELD BLOWS	™(N₁) ∞	LAB SAMPLE ID	LAB RESULTS	REMARKS/NOTES							
WELL GRADED SAND WITH GRAVEL (SW), medium dense to loose, gray - brown, wet													
	S1 14 S2 9	7 7 6 6 4 2	9	S1 S2	S1 MC = 7.4% 41.5% gravel, 55.0% sand, 3.5% silt S2 MC = 9.8%								
SILTY SAND (SM), with organics, loose, gray, wet	S3 6	1 3 4	9	S3	S3 MC = 17.9% 3.2% gravel, 80.4% sand, 16.4% silt								
	S4 10	3 4 3	9	S4	P0.02 = 5.9% FC = F2	Fine grains possibly washed out.							
SILTY GRAVEL (GM)					S4 MC = 16.9%								
SILTY SAND (SM), loose to medium dense, gray, wet, brown-red lens													
	S5 9	4 3 4	9	S5	S5 MC = 26.1% P200 = 24.4%								
Bottom of borehole at 21.5 ft bgs.	S6	5 4 5	11	S6	S6 MC = 20.2% P200 = 23.5%								

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 43A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 43A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43A Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 43A Sample S6 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 43B

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NU	JMBER	: 513	8-18							
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.											
EXPLORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHO	LORATION METHOD: Hollow Stem Auger									
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer LOGGED BY: S. McCoy											
DATE STARTED: 10/13/2018	DATE COMPLETED: 10/13/2018										
EXPLORATION LOCATION: See report Figure 1 and Figure 10	GROUND ELEVATION: Not Known										
☐ GROUNDWATER (ATD): _Approx. 3.0 ft bgs	▼GROUNDWATER ():	N/A									
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	S : <u>O</u> v	ercast	, Ligh	t Rain	, 45	5°F				
HLGD STORY MATERIAL DESCRIPTION O	SAMOI E TVOE	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) ₆₀	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS			
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), me wet	dium dense, gray,	U			10		0.1	24			
\frac{\frac}\frac{\frac{\frac{\frac{\fir}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\		S1	11	4 6 5	18		S1	S1 MC = 7.3% 48.6% gravel, 45.8% sand, 5.6% silt			
5 WELL GRADED SAND WITH GRAVEL (SW), medium dense, bro	own - gray, wet	S2	11	7 7 7	22		S2	S2 MC = 7.5% 42.3% gravel,			
SILTY SAND (SM), loose to very loose, gray, red-brown organic	ens	S3	2	7 2 2	6		S3	53.6% sand, 4.1% silt P0.02 = 2.6% FC = NFS			
<u>10</u>		S4	9	1 1 2	4		S4	S3 MC = 45.8% P200 = 30.9%			
								S4 MC = 46.5% 8.5% gravel, 74.3% sand, 17.2% silt P0.02 = 6.6% FC = F2			
		S5	8	2 2 3	6		S5	S5 MC = 27.4%			
POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), m - brown, wet	edium dense, gray										
		S6	7	7 6 4	11		S6	S6 MC = 7.3%			
Bottom of borehole at 21.5 ft bgs.											

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 43B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 43B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 43B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 43B Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 43B Sample S6 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT N	JMBER	: <u>513</u>	8-18							
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.											
EXPLORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHO	XPLORATION METHOD: Hollow Stem Auger									
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer LOGGED BY: S. McCoy											
DATE STARTED: 10/12/2018 DATE COMPLETED: 10/12/20											
EXPLORATION LOCATION: See report Figure 1 and Figure 11	GROUND ELEVATION:	DUND ELEVATION: Not Known									
∑ GROUNDWATER (ATD):Approx. 2.5 ft bgs	▼GROUNDWATER ():	N/A									
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	IS : <u>O</u>	/ercas	t, Rain	, 45°F	:					
MATERIAL DESCRIPTION MATERIAL DESCRIPTION		SAMPLE IYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	⁰⁹ (¹N)	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS			
WELL GRADED GRAVEL WITH SAND (GW), dense to medium of brownish gray, wet	lense, gray to	V									
5	7	S1	12	4 9 8	28		S1	\$1 MC = 5.0% 57.6% gravel, 38.2% sand, 4.2% silt			
		S2	12	7 6 7	20		S2	S2 MC = 7.2% 47.6% gravel, 47.5% sand,			
		S3	6	16 7 6	17		S3	4.9% silt P0.02 = 3.2% FC = S1			
POORLY GRADED SAND WITH SILT AND GRAVEL (SP-SM), lowet	ose, red - brown,	S4	7	4 3 2	6		S4	S3 MC = 6.7% 53.3% gravel, 43.2% sand, 3.5% silt			
SANDY SILT (ML), very soft to medium stiff, gray, wet, organic le	ns							S4 MC = 8.9%			
		S5	6	1 0 1	1		S5	S5 MC = 26.9% P200 = 62.7%			
Organic lens		S6	12	1 3 3	8		S6	S6 MC = 31.8%			
Bottom of borehole at 21.5 ft bgs.											

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44A Sample S1 Sample Interval 2.5 - 5.0 ft bgs

Exploration COP 44A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 44A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44A Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 44A Sample S6 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION COP 44B

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NU	JMBER	: <u>513</u>	8-18							
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.											
EXPLORATION EQUIPMENT: Truck-mounted CME 75	EXPLORATION METHO	(PLORATION METHOD: Hollow Stem Auger									
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer LOGGED BY: S. McCoy											
DATE STARTED: 10/12/2018	DATE COMPLETED:	: _10/12/2018									
EXPLORATION LOCATION: See report Figure 1 and Figure 11	GROUND ELEVATION:	ROUND ELEVATION: Not Known									
☐ GROUNDWATER (ATD): _Approx. 2.5 ft bgs	▼GROUNDWATER ():	N/A									
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	S : <u>O</u> v	ercast	t, Rain	, 45°F	=					
HEAD STORY MATERIAL DESCRIPTION MATERIAL DESCRIPTION O	NO POWER TO STATE OF THE POWER TO STATE OF T	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) 80	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS			
WELL GRADED GRAVEL WITH SAND (GW), very dense, gray, v	vet, fractured	U	10								
WELL CRAPED CAND MITH CHI T AND CRAVEL (CM/ CM/		S1	12	15 21 11	53		S1	\$1 MC = 8.0% 58.9% gravel, 36.3% sand, 4.8% silt			
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), med wet, fractured to subrounded	lum dense, gray,	S2	12	7 8 7	22		S2	S2 MC = 7.7% 47.1% gravel,			
		S3	9	10 8 8	21		S3	47.7% sand, 5.2% silt P0.02 = 3.6% FC = S2			
POORLY GRADED SAND WITH GRAVEL (SP), loose, red - brow	n	S4	8	5 4 4	9		S4	S3 MC = 8.6% S4 MC = 9.3% 43.9% gravel, 53.7% sand, 2.4% silt			
SILTY SAND (SM), trace gravel, very loose to loose, gray, wet											
		S5	10	1 1 1	2		S5	S5 MC = 25.8% P200 = 20.1%			
No gravel		S6	10	4 3 3	8		S6	S6 MC = 23.8%			
Bottom of borehole at 21.5 ft bgs.											

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 44B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 44B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 44B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 44B Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 44B Sample S6 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION COP

PAGE 1 OF 1

<i>₩</i> .	PAGE 1 OF
GE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: 5138-18
ROJECT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.
XPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger
AMPLING METHOD: _Modified Split-spoon w/ 340lb autohammer	LOGGED BY: _S. McCoy
ATE STARTED: 10/12/2018	DATE COMPLETED: 10/12/2018
(PLORATION LOCATION: See report Figure 1 and Figure 12	GROUND ELEVATION: Not Known
GROUNDWATER (ATD): _ Approx. 3.0 ft bgs	▼GROUNDWATER (): N/A
PLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Overcast, Rain, 40°F
MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION	SAMPLE TYPE FIELD SAMPLE ID FIELD BLOWS (N.), 60 SAMPLE INT. COLLECT LAB SAMPLE ID LAB
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), gray - brown	
	S1 9 16 N/A* S1 S1 MC = 7.6% 45.3% gravel, 47.7% sand, 7.0% aith
SILTY SAND (SM), gray, wet	Town silt Town
POORLY GRADED SAND (SP), medium dense to loose, gray,	P0.02 = 12.0% under weight of hammer. S3 MC = 29.2%
POORLY GRADED GRAVEL WITH SAND (GP), medium dense, red / brown, wet	S4 13 2 20 S4A NIC = 29.2% NC = 8.7% S4B MC = 20.4%
	S5 10 8 23 S5 S5 MC = 7.1%
POORLY GRADED SAND WITH SILT AND GRAVEL	9 55.9% gravel, 42.2% sand, 1.9% silt
(SP-SM), medium dense, gray, wet, coarse grained	S6 5 2 15 S6 S6 Rock in sample low recovery.
E∷∰∐ Bottom of borehole at 21.5 ft bgs.	7

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 45A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 45A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 45A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

PHOTO LOG EXPLORATION COP 45A

CLIENT Bratslavsky Consulting Engineers, Inc.

Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 45A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 45A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 45A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 45A Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration COP 45A Sample S6 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION COP 45B

PAGE 1 OF 1

**************************************	PAGE 1 OF					
NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: _5138-18					
PROJECT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.					
EXPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger					
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: _S. McCoy					
DATE STARTED: 10/12/2018	DATE COMPLETED: 10/12/2018					
EXPLORATION LOCATION: See report Figure 1 and Figure 12	GROUND ELEVATION: Not Known					
GROUNDWATER (ATD): Approx. 3.0 ft bgs	▼GROUNDWATER (): N/A					
EXPLORATION COMPLETION: _ Backfilled with cuttings	WEATHER CONDITIONS: Overcast, Rain, 40°F					
MATERIAL DESCRIPTION SOILS LOG RAPHIC LOG RAPHIC	SAMPLE TYPE FIELD SAMPLE ID RECOVERY (in) RECOVERY (in) (N ₁) ₆₀ SAMPLE INT. COLLECT LAB SAMPLE ID					
WELL GRADED GRAVEL WITH SAND (GW), medium dense, gray - brown, wet						
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM),	S1 12 5 23 S1 S1 MC = 6.6% 54.3% gravel, 41.5% sand, 4.2% silt					
medium dense, gray, wet	S2 12 20 22 S2 S2 MC = 7.3% 44.4% gravel, 49.0% sand,					
POORLY GRADED SAND (SP), medium dense, gray - brown, wet, fine to coarse grained	S3 11 12 11 S3 6.6% silt P0.02 = 4.7% FC = S2 S3 MC = 18.5%					
SILTY SAND (SM), very loose, gray, wet, red to brown organic lenses	S4 9 1 1 S4 S4 MC = 42.0% P200 = 34.7%					
POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), medium dense, wet						
	S5 12 11 15 S5 S5 Washed out of sampler bottom.					
	Sand heave in auger, no sample attempted.					
Bottom of borehole at 21.5 ft bgs.						

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 45B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 45B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration COP 45B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 45B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration COP 45B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration COP 45B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION COP 45B

CLIENT Bratslavsky Consulting Engineers, Inc.

Draisiavsky Consulting Engineers, inc.

PROJECT NAME USFWS Fish Passage Improvements

 PROJECT NUMBER
 5138-18

 PROJECT LOCATION
 Copper River Hwy, Cordova, AK

Exploration COP 45B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION CAB

PAGE 1 OF 1

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT N	JMBER	: <u>513</u>	8-18			
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.							
EXPLORATION EQUIPMENT: Truck-mounted CME 75 EXPLORATION METHOD: Hollow Stem Auger							
SAMPLING METHOD: _Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McC	оу					
DATE STARTED: 10/15/2018	DATE COMPLETED:	10/15/2	018				
EXPLORATION LOCATION: See report Figure 1 and Figure 4	GROUND ELEVATION:	Not I	<u> Known</u>				
☐ GROUNDWATER (ATD): _Approx. 4.5 ft bgs	▼GROUNDWATER ():	N/A					
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	IS : <u>O</u>	/ercas	t, Rain	, 45°F		
HTGO OF MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION		SAMPLE IYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS		SAMPLE INT. COLLECT	LAB RESULTS
WELL GRADED GRAVEL WITH SILT AND SAND (GW-GM), trace medium dense, brown - gray, damp to wet	e organics,	V					
		S1	9	7 5 3	13	S1	S1 MC = 10.5% 56.8% gravel, 36.1% sand, 7.1% silt
Grades to gray		S2	10	3 4 4	11	S2	S2 MC = 10.1%
WELL GRADED SAND WITH SILT AND GRAVEL (SW-SM), loose	e, gray brown, wet	S3	7	5 2 3	6	S3	S3 MC = 12.0% 27.9% gravel, 64.7% sand,
10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		S4	7	4 3 4	8	S4	7.4% silt P0.02 = 5.0% FC = S2 S4 MC = 7.6%
SANDY SILT (ML), medium stiff, gray, wet	-	S5	10	9 2 2	5	S5	S5 MC = 26.4% P200 = 67.9%
SILTY SAND (SM), medium dense, gray, wet				40	40	00	00
		S6	8	10 9 6	19	S6	S6 MC = 11.7%
Bottom of borehole at 21.5 ft bgs.		1	1	<u> </u>			1

PHOTO LOG EXPLORATION CAB 2A

CLIENT Bratslavsky Consulting Engineers, Inc.

Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration CAB 2A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration CAB 2A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

PROJECT NAME USFWS Fish Passage Improvements

PHOTO LOG

EXPLORATION CAB 2A

PROJECT NUMBER 5138-18

CLIENT Bratslavsky Consulting Engineers, Inc.

Exploration CAB 2A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration CAB 2A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION CAB 2A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration CAB 2A Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration CAB 2A Sample S6 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION CAB

PAGE 1 OF 1

NGE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NU	JMBER	: <u>513</u>	8-18				
PROJECT LOCATION: Copper River Hwy, Cordova, AK EXPLORATION CONTRACTOR: Discovery Drilling, Inc.								
EXPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHO	D: <u>H</u>	ollow S	Stem A	Auger			
SAMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McC	оу						
DATE STARTED: 10/15/2018 DATE COMPLETED: 10/15/2018								
EXPLORATION LOCATION: See report Figure 1 and Figure 4 GROUND ELEVATION: Not Known								
∑ GROUNDWATER (ATD): Approx. 4.5 ft bgs ∑ GROUNDWATER (): N/A								
EXPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITION	IS : <u>Ov</u>	ercast	, Rain	, 45°F	=		
MATERIAL DESCRIPTION OBJUT STORY MATERIAL DESCRIPTION O D D D D D D D D D D D D D D D D D D	NO.	FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	(N ₁) ₆₀	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS
POORLY GRADED GRAVEL WITH SILT AND SAND (GP-GM), b	rown - gray, moist	U	40	0	40		04	<u> </u>
SILT WITH SAND (ML), medium dense, blue - gray, moist		S1	10	9 4 4	13		S1	S1 MC = 26.4% P200 = 64.2%
5 SILTY SAND WITH GRAVEL (SM), medium dense, brown gray, Wood	moist to wet	S2	13	3 3 7	16		S2	S2 MC = 13.9%
WELL GRADED GRAVEL WITH SAND (GW), medium dense, br	own gray wat					ī		
	own - gray, wet	S3	8	4 5 4	13		S3	S3 MC = 10.8% 48.0% gravel, 47.9% sand,
		S4	8	5 3 4	9		S4	4.1% silt P0.02 = 2.4% FC = PFS S4
								MC = 11.0%
SANDY SILT (ML), stiff, gray, wet		S5	10	10 4 4	10		S5	S5 MC = 26.3% P200 = 60.1%
SILTY SAND (SM), some gravel, medium dense, brown - gray, v	vet							
		S6	8	6 8 8	20		S6	S6 MC = 10.6%
Bottom of borehole at 21.5 ft bgs.								

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION CAB 2B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration CAB 2B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration CAB 2B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION CAB 2B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration CAB 2B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration CAB 2B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PHOTO LOG EXPLORATION CAB 2B

PROJECT NAME USFWS Fish Passage Improvements

Exploration CAB 2B Sample S5 Sample Interval 15.0 - 16.5 ft bgs

Exploration CAB 2B Sample S6 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION SHER

PAGE 1 OF 1

1 dx. 007 011 0000	PAGE 1 OF					
GE-TFT PROJECT NAME: USFWS Fish Passage Improvements	NGE-TFT PROJECT NUMBER: 5138-18					
ROJECT LOCATION: Copper River Hwy, Cordova, AK	EXPLORATION CONTRACTOR: Discovery Drilling, Inc.					
XPLORATION EQUIPMENT: _Truck-mounted CME 75	EXPLORATION METHOD: Hollow Stem Auger					
AMPLING METHOD: Modified Split-spoon w/ 340lb autohammer	LOGGED BY: S. McCoy					
ATE STARTED: 10/15/2018	DATE COMPLETED: <u>10/15/2018</u>					
KPLORATION LOCATION: See report Figure 1 and Figure 3	GROUND ELEVATION: Not Known					
GROUNDWATER (ATD): Approx. 6.0 ft bgs	▼GROUNDWATER (): N/A					
KPLORATION COMPLETION: Backfilled with cuttings	WEATHER CONDITIONS: Overcast, Rain, 45°F					
MATERIAL DESCRIPTION MATERIAL DESCRIPTION	SAMPLE TYPE FIELD SAMPLE ID RECOVERY (in) RECOVERY (in) RECOVERY (in) RECOVERY (in) LAB SAMPLE ID LA					
POORLY GRADED GRAVEL WITH SAND (GP), medium dense, brown, damp						
	S1 8 3 21 S1 S1 MC = 4.7% 52.9% gravel, 44.3% sand, 2.8% silt S2 15 5 25 S2 MC = 6.5%					
WELL GRADED SAND WITH SILT (SW-SM), medium dense, brown to gray, fine to medium grained, silt lens	S3 12 12 16 S3 S3 MC = 16.4% 5.5% gravel, 83.9% sand, 10.6% silt					
POORLY GRADED SAND WITH SILT AND GRAVEL	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
(SP-SM), loose to medium dense, gray, wet, silt lens	S5 6 4 9 S5 S5 MC = 10.6% 21.1% gravel, 68.7% sand, 10.2% silt					
POORLY GRADED SAND WITH SILT (SP-SM), loose, wet, fine grained	S6 8 6 12 S6 P0.02 = 5.4% FC = S2 S6 MC = 15.1%					
	3 9 S7 S7 MC = 18.6%					
Bottom of borehole at 21.5 ft bgs.	5 1					

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1A Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration SHER 1A Sample S2 Sample Interval 5.0 - 6.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1A Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration SHER 1A Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1A Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration SHER 1A Sample S6 Sample Interval 15.0 - 16.5 ft bgs

Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1A

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1A Sample S7 Sample Interval 20.0 - 21.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993

EXPLORATION SHER

PAGE 1 OF 1

NGE-T	TFT PROJECT NAME: USFWS Fish Passage Improvement	S	NGE-TFT PROJECT N	UMBER	: <u>513</u>	8-18				
PROJI	IECT LOCATION: Copper River Hwy, Cordova, AK		EXPLORATION CONTRACTOR: Discovery Drilling, Inc.							
EXPLO	ORATION EQUIPMENT: Truck-mounted CME 75		EXPLORATION METHOD: Hollow Stem Auger							
SAMP	PLING METHOD: Modified Split-spoon w/ 340lb autohamme	er								
DATE	STARTED: 10/15/2018		DATE COMPLETED: _	10/15/2	018					
EXPLO	ORATION LOCATION: See report Figure 1 and Figure 3		GROUND ELEVATION	Not k	Known					
<u></u> GR	ROUNDWATER (ATD): Approx. 6.5 ft bgs		▼GROUNDWATER ():	N/A						
EXPLO	ORATION COMPLETION: Backfilled with cuttings		WEATHER CONDITION	NS: <u>O</u>	/ercast	, Rain	, 45°F	:		
O DEPTH (ft) GRAPHIC				SAMPLE TYPE FIELD SAMPLE ID	RECOVERY (in)	FIELD BLOWS	[∞] (N¹)	SAMPLE INT. COLLECT	LAB SAMPLE ID	LAB RESULTS
· · · · · · · · · · · · · · · · · ·	WELL GRADED SAND WITH SILT AND GRAVEL (SW dense, brown - gray, moist to wet	V-SM), dense	e to medium	V	10	10	- 10		0.1	24
		6		S1	13	19 11 13	40		S1	S1 MC = 8.5% 44.9% gravel, 49.2% sand, 5.9% silt
	abla			S2	12	23 8 7	20		S2	S2 MC = 4.7% 41.1% gravel, 50.5% sand,
 	SILTY SAND (SM), medium dense, gray, wet			S3	5	12 7 6	15		S3	8.4% silt S3 MC = 7.7%
10 /	POORLY GRADED SAND WITH GRAVEL (SP), loose grained	, dark gray, v	wet, coarse	S4	5	5 4 2	6		S4	14.5% gravel, 69.2% sand, 16.3% silt P0.02 = 11.1% FC = F2
II	SILTY SAND (SM), loose, gray, wet			S5	7	5 1 4	6		S5	S4 MC = 9.6% S5 MC = 20.0% P200 = 40.6%
15	POORLY GRADED SAND (SP), loose, dark gray, wet,	, coarse to m	edium grained							
(**) (**)				S6	9	9 4 4	9		S6	S6 MC = 10.2%
 20										
	Grades to fine grained			S7	5	3 3 4	8		S7	S7 MC = 11.2%
	Bottom of borehole at 21.5	oπ bgs.								

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1B Sample S1 Sample Interval 2.5 - 4.0 ft bgs

Exploration SHER 1B Sample S2 Sample Interval 5.0 - 6.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane
Anchorage, AK 99515
Telephone: 907-344-5934
Fax: 907-344-5993

PHOTO LOG EXPLORATION SHER 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1B Sample S3 Sample Interval 7.5 - 9.0 ft bgs

Exploration SHER 1B Sample S4 Sample Interval 10.0 - 11.5 ft bgs

11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

Exploration SHER 1B Sample S5 Sample Interval 12.5 - 14.0 ft bgs

Exploration SHER 1B Sample S6 Sample Interval 15.0 - 16.5 ft bgs

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515 Telephone: 907-344-5934 Fax: 907-344-5993 PHOTO LOG EXPLORATION SHER 1B

CLIENT Bratslavsky Consulting Engineers, Inc.

PROJECT NAME USFWS Fish Passage Improvements

PROJECT NUMBER 5138-18

Exploration SHER 1B Sample S7 Sample Interval 20.0 - 21.5 ft bgs

EXPLORATION LEGEND

NGE-TFT PROJECT NAME USFWS Fish Passage Improvements

PROJECT LOCATION Copper River Hwy, Cordova, AK

NGE-TFT PROJECT NUMBER 5138-18

LITHOLOGIC SYMBOLS (Unified Soil Classification System)

GM: USCS Silty Gravel

000

GP: USCS Poorly-graded Gravel

GP-GM: USCS Poorly-graded Gravel

with Silt

Q

GW: USCS Well-graded Gravel

GW-GM: USCS Well-graded Gravel with

Silt

ML: USCS Silt

7 77 77 7

PT: USCS Peat

SM: USCS Silty Sand

SP: USCS Poorly-graded Sand

SP-SM: USCS Poorly-graded Sand with

SW: USCS Well-graded Sand

SW-SM: USCS Well-graded Sand with

Silt

WOOD: Plywood

SAMPLER SYMBOLS

Modified Penetration Test

No Recovery

WELL CONSTRUCTION SYMBOLS

ABBREVIATIONS

LL - LIQUID LIMIT (%)

PI - PLASTIC INDEX (%)

MC - MOISTURE CONTENT (%)

DD - DRY DENSITY (PCF)

NP - NON PLASTIC

P200 - PERCENT PASSING NO. 200 SIEVE

P0.02- PERCENT PASSING 0.02mm SIEVE

PP - POCKET PENETROMETER (tons/ft²)

S/U - CASING STICK-UP

TV - TORVANE

PID - PHOTOIONIZATION DETECTOR

UC - UNCONFINED COMPRESSION

ppm - PARTS PER MILLION

N/E - NOT ENCOUNTERED

▼ Water Level After 24 Hours, or as Shown

Anchorage, AK 99515
Telephone: 907-344-5934
Fax: 907-344-5993
CLIENT Bratslavsky Consulting Engineers, Inc.

SOIL CLASSIFICATION CHART

PROJECT NAME USFWS Fish Passage Improvements

NGE-TFT PROJECT NUMBER 5138-18 PROJECT LOCATION Copper River Hwy, Cordova, AK

	AJOR DIVISION	ONS	SYME	BOLS	TYPICAL
14)	AJON DIVION		GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50%	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)		SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 200 SIEVE SIZE				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
1.5. 200 OIL VL OIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC S	SOILS	77 77 77 77 77 7 77 77 77 77 7	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS. DIAGONAL LINES INDICATE UNKNOWN DEPTH OF SOIL TRANSITION.

EXPLORATION LOG KEY

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515
Telephone: 907-344-5934
Fax: 907-344-5993
CLIENT Bratslavsky Consulting Engineers, Inc.

NGE-TFT PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements

PROJECT LOCATION Copper River Hwy, Cordova, AK

SAMPLER SYMBOLS

SPT w/ 140# Hammer 30" Drop and 2.0" O.D. Sampler

Modified SPT w/ 340# Hammer 30" Drop and 3.0 O.D. Sampler

Grab Sample

Shelby Tube Sample

Rock Core Sample

Direct Push Sample

No Recovery

N/E

Not Encountered

COMPONENT DEFINITIONS

Boulders Cobbles Gravel Coarse gravel Boulders Cobbles Cobbles Coarse gravel Larger than 12 in 3 in to 12 in 4 (4.5mm) 3 in to 3/4 in	COMPONENT	SIZE RANGE
Sand No. 4 (4.5 mm) to No. 200 Coarse sand Medium sand No. 10 (2.0 mm) to No. 10 (2.0 mm) No. 10 (2.0 mm) to No. 40 (0.42 mm)	Boulders Cobbles Gravel Coarse gravel Fine gravel Sand Coarse sand Medium sand Fine sand	Larger than 12 in 3 in to 12 in 3 in to No. 4 (4.5mm) 3 in to 3/4 in 3/4 in to No. 4 (4.5 mm) No. 4 (4.5 mm) to No. 200 No. 4 (4.5 mm) to No. 10 (2.0 mm) No. 10 (2.0 mm) to No. 40 (0.42 mm) No. 40 (0.42 mm) to No. 200 (0.074 mm)

COMPONENT PROPORTIONS

DESCRIPTIVE TERMS	RANGE OF PROPORTION
Trace	1-5%
Few	5-10%
Little	10-20%
Some	20-35%
And	35-50%

WELL SYMBOLS

1" Slotted Pipe Backfilled with Silica Sand

1" PVC Pipe Backfilled with Auger Cuttings

1" PVC Pipe with Bentonite Seal

Capped Riser

MOISTURE CONTENT

DRY	Absence of moisture, dusty, dry to the touch
DAMP	Some perceptible moisture; below optimum
MOIST	No visible water; near optimum moisture content
WET	Visible free water, usually soil is below water table

RELATIVE DENSITY OR CONSISTENCY VERSUS SPT N-VALUE

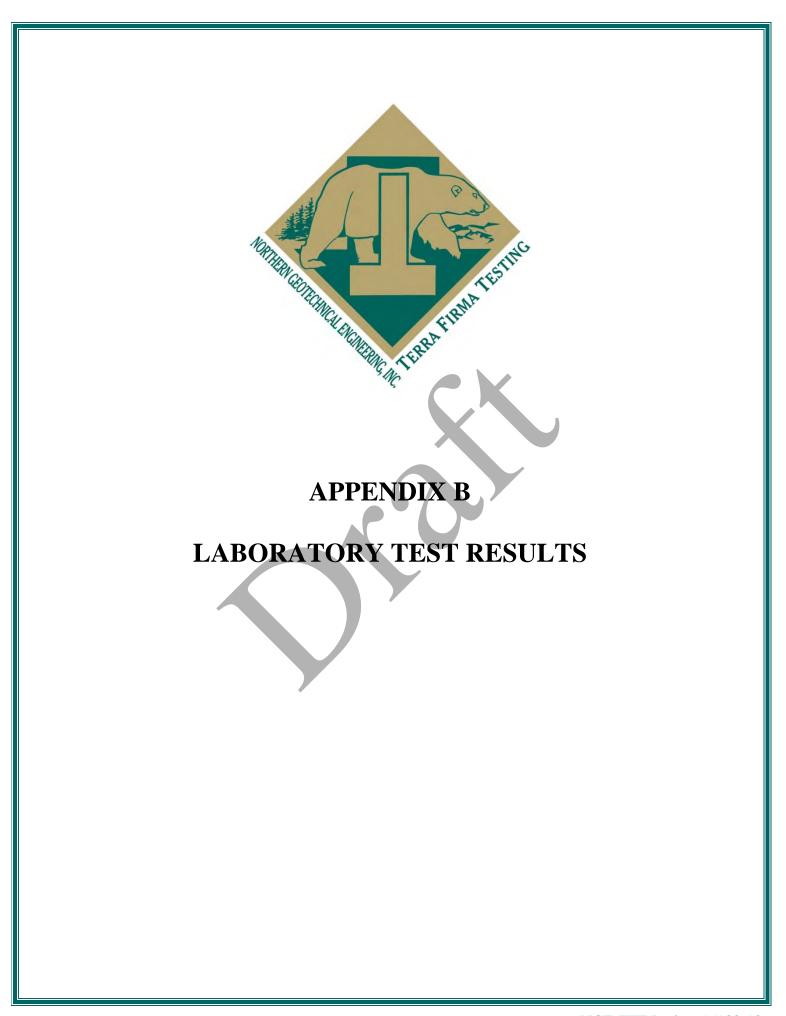
COH	ESIONLESS SC	OILS	COHESIVE SOILS				
DENSITY	N (BLOWS/FT)	APPROXIMATE RELATIVE DENSITY (%)	CONSISTENCY	N (BLOWS/FT)	APPROXIMATE UNDRAINED SHEAR STRENGTH (PSF)		
VERY LOOSE	0-4	0-15	VERY SOFT	0-1	< 250		
LOOSE	5-10	15-35	SOFT	2-4	250-500		
MEDIUM DENSE	11-25	35-65	MEDIUM STIFF	5-8	500-1000		
DENSE	26-50	65-85	STIFF	9-15	1000-2000		
VERY DENSE	> 50	85-100	VERY STIFF	16-30	2000-4000		
			HARD	> 30	> 4000		

EXPLORATION LOG KEY

Northern Geotechnical Engineering, Inc. d.b.a. Terra Firma Testing 11301 Olive Lane Anchorage, AK 99515
Telephone: 907-344-5934
Fax: 907-344-5993
CLIENT Bratslavsky Consulting Engineers, Inc.

NGE-TFT PROJECT NUMBER 5138-18

PROJECT NAME USFWS Fish Passage Improvements


PROJECT LOCATION Copper River Hwy, Cordova, AK

FROST DESIGN SOIL CLASSIFICATION

FROST GROUP (USACOE)	FROST GROUP (M.O.A.)	SOIL TYPE	% FINER THAN 0.02mm BY MASS	TYPICAL SOIL TYPES UNDER UNIFIED SOIL CLASSIFICATION SYSTEM
NFS*	NFS*	(A) GRAVELS CRUSHED STONE CRUSHED ROCK (B) SANDS	0 - 1.5	GW, GP
		(B) SANDS	0 - 3	SW, SP
PFS⁺	NFS*	(A) GRAVELS CRUSHED STONE CRUSHED ROCK	1.5 - 3	GW, GP
	F2	(B) SANDS	3 - 10	SW, SP
S1	F1	GRAVELLY SOILS	3 - 6	GW, GP, GW-GM, GP-GM
S2	F2	SANDY SOILS	3 - 6	SW, SP, SW-SM, SP-SM
F1	F1	GRAVELLY SOILS	6 - 10	GM, GW-GM, GP-GM
F2	F2	(A) GRAVELLY SOILS (B) SANDS	10 - 20 6 - 15	GM, GW-GM, GP-GM SM, SW-SM, SP-SM
F3	F3	(A) GRAVELLY SOILS (B) SANDS, EXCEPT VERY FINE SILTY SANDS (C) CLAYS, PI>12	Over 20 Over 15	GM, GC SM, SC CL, CH
F4	F4	(A) ALL SILTS (B) VERY FINE SILTY SANDS (C) CLAYS, PI<12 (D) VARVED CLAYS AND OTHER FINE GRAINED, BANDED SEDIMENTS	Over 15	ML, MH SM CL, CL-ML CL & ML;
*Non-frost susci		t requires lab testing to determine frost design soils classification.		CL, ML, & SM; CL, CH, & ML; CL, CH, ML, & SM

ICE CLASSIFICATION SYSTEM

GROUP	ICE VISIBILITY		SYMBOL			
N	SEGREGATED ICE NOT VISIBLE BY EYE	POORLY BONDED OR FRIABLE			Nf	
		WELL	NO EXCESS ICE	Nb	Nbn	
		BONDED	EXCESS MICROSCOPIC ICE	טויו	Nbe	
V	SEGREGATED ICE IS VISIBLE BY EYE AND IS ONE INCH OR LESS IN THICKNESS	INDIVIDUAL ICE CRYSTALS OR INCLUSIONS			Vx	
		ICE	Vc			
		RANDOM	Vr			
		STRATIFIED OR DISTINCTLY ORIENTED ICE			Vs	
		UNIFORMLY DISTRIBUTED ICE			Vu	
	ICE IS GREATER THAN ONE INCH IN THICKNESS	ICE WITH SOILS INCLUSIONS			ICE + Soil Type	
ICE		ICE WITHOUT SOILS INCLUSIONS			ICE	

Summary of Laboratory Test Results

USFWS Fish Passage Improvements NGE-TFT Project #:5138-18

ass. Organic	Unified Soil Classification
Content	ASTM D2487
(ASTM D297	3)
(% By Mass	(6)(4 (6) 4) (4 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(GW-GM) Well-graded gravel w/ silt and sand
	(SW-SM) Well-graded sand w/ silt and gravel
	(SW) Well-graded sand w/ gravel
2.0	
	(GW-GM) Well-graded gravel w/ silt and sand
	(SM) Silty sand w/ gravel
	(SW-SM) Well-graded sand w/ silt and gravel
	(ML) Sandy silt
	(GP) Poorly-graded gravel w/ sand
	(SP-SM) Poorly-graded sand w/ silt and gravel
	(GW-GM) Well-graded gravel w/ silt and sand
	(GW-GM) Well-graded gravel w/ silt and sand
	(GW-GM) Well-graded gravel w/ silt and sand
	, , , , ,
	(GW-GM) Well-graded gravel w/ silt and sand
	, , , , , , , , , , , , , , , , , , , ,
	(GP) Poorly-graded gravel w/ sand
	(GW-GM) Well-graded gravel w/ salt and sand
	(SW) Well-graded sand w/ gravel
	(GW) Well-graded gravel w/ sand
	(CVV) VVCII BIUUCU BIUVCI W/ JUIIU
	+
	+
	+
+	+

Summary of Laboratory Test Results

USFWS Fish Passage Improvements NGE-TFT Project #:5138-18

COP 20B	S2	5.0	6.5	5.7	39.6	51.5	8.9				(SW-SM) Well-graded sand w/ silt and gravel
COP 20B	S3	7.5	9.0	9.1	40.0	55.3	4.7		2.6	NFS	(SP) Poorly-graded sand w/ six and gravel
COP 20B	S4	10.0	11.5	7.0	55.1	42.1	2.8		1.7	PFS	(GW) Well-graded gravel w/ sand
COP 20B	S5	12.5	14.0	9.5	33.1	42.1	2.0		1.7	713	(GW) Well-gladed glavel W/ Salid
COP 20B	S6	15.0	16.5	11.8	34.8	60.4	4.8				(SW) Well-graded sand w/ gravel
COP 20B	S7	20.0	21.5	14.5	34.0	00.4	4.0				(Sw) Well-gladed Salid W/ glavel
COF 20B	31	20.0	21.5	14.5							
COP 22A	S1	2.5	4.0	4.1							
				4.1	44.7	40.5	5.0				(CM CM) M II I I I I I I I I I
COP 22A	S2	5.0	6.5	4.0	44.7	49.5	5.8				(SW-SM) Well-graded sand w/ silt and gravel
COP 22A	S3	7.5	9.0	5.8	56.0	38.0	6.0				(GW-GM) Well-graded gravel w/ silt and sand
COP 22A	S4	10.0	11.5	6.6	51.1	43.4	5.5		3.2	S1	(GW-GM) Well-graded gravel w/ silt and sand
COP 22A	S5	12.5	14.0	5.1							(2000)
COP 22A	S6	15.0	16.5	4.1	51.8	47.2	1.0				(GW) Well-graded gravel w/ sand
COP 22A	S7	20.0	21.5	NO SAMPLE							
COP 22B	S1	2.5	4.0	7.1	52.7	41.3	6.0				(GW-GM) Well-graded gravel w/ silt and sand
COP 22B	S2	5.0	6.5	8.7	36.3	54.0	9.7				(SW-SM) Well-graded sand w/ silt and gravel
COP 22B	S3	7.5	9.0	7.0	41.5	52.2	6.3		4.3	S2	(SW-SM) Well-graded sand w/ silt and gravel
COP 22B	S4	10.0	11.5	6.4	53.8	42.2	4.0		2.6	PFS	(GW) Well-graded gravel w/ sand
COP 22B	S5	12.5	14.0	10.4							
COP 22B	S6	15.0	16.5	9.1							
COP 22B	S7	20.0	21.5	9.1							
COP 25A	S1	2.5	4.0	3.4	53.1	42.8	4.1				(GW) Well-graded gravel w/ sand
COP 25A	S2	5.0	6.5	4.7	39.7	54.8	5.5				(SW-SM) Well-graded sand w/ silt and gravel
COP 25A	S3	7.5	9.0	8.1	44.2	54.6	1.2		0.9	NFS	(SW) Well-graded sand w/ gravel
COP 25A	S4	10.0	11.5	3.7							
COP 25A	S5	12.5	14.0	6.8	52.2	46.1	1.7				(GW) Well-graded gravel w/ sand
COP 25A	S6	15.0	16.5	13.1							
COP 25A	S7	20.0	21.5	8.8				10.6			
COP 25B	S1	2.5	4.0	6.8							
COP 25B	S2	5.0	6.5	3.2	38.1	54.6	7.3				(SP-SM) Poorly-graded sand w/ silt and gravel
COP 25B	S3	7.5	9.0	8.5	39.8	56.9	3.3				(SP) Poorly-graded sand w/ gravel
COP 25B	S4	10.0	11.5	8.1	41.1	56.8	2.1		1.7	NFS	(SW) Well-graded sand w/ gravel
COP 25B	S5	12.5	14.0	8.1							, , , , , , , , , , , , , , , , , , , ,
COP 25B	S6	15.0	16.5	221.6							
COP 25B	S7	20.0	21.5	11.5							
222											
COP 33A	S1	5.0	6.5					1		1	
COP 33A	S2	10.0	11.5	5.2	70.6	25.6	3.8	1	2.1	PFS	(GW) Well-graded gravel w/ sand
COP 33A	S3	12.5	14.0	71.2	11.2	40.9	47.9				(SM) Silty sand
COP 33A	S4	15.0	16.5	20.7	11.2	40.5	77.3				(Jivi) Jincy Junu
COP 33A	S5	17.5	19.0	34.0				85.2		 	
COP 33A	S6	20.0	21.5	24.1				03.2		1	
COF 33A	30	20.0	۷۱.۵	24.1				1		1	
					l .		l	<u> </u>		1	

Summary of Laboratory Test Results

USFWS Fish Passage Improvements NGE-TFT Project #:5138-18

COP 33B	S1	5.0	6.5	10.1	42.0	45.2	12.8	1		1		(SM) Silty sand w/ gravel
COP 33B	S2	10.0	11.5	8.6	62.3	29.9	7.8		5.1	S1		(GP-GM) Poorly-graded gravel w/ silt and sand
COP 33B	S3	12.5	14.0	21.5	02.3	29.9	7.0		3.1	31		(GF-Givi) FOOTIY-graded graver w/ siit and sand
COP 33B	S4A	15.0	16.0	24.6								
COP 33B	S4B	16.0	16.5	20.2						+		+
COP 33B	S5	17.5	19.0	26.4							F 4	
						-					5.4	
COP 33B	S6	20.0	21.5	19.2								
00D 40A	04	0.5	4.0	7.4	44.5	55.0	2.5					(514) 14 1 1 1 1 1 1 1 1 1
COP 43A	S1	2.5	4.0	7.4	41.5	55.0	3.5					(SW) Well-graded sand w/ gravel
COP 43A	S2	5.0	6.5	9.8		22.4						(ca a) city
COP 43A	S3	7.5	9.0	17.9	3.2	80.4	16.4		5.9	F2		(SM) Silty sand
COP 43A	S4	10.0	11.5	16.9								
COP 43A	S5	15.0	16.5	26.1				24.4				
COP 43A	S6	20.0	21.5	20.2				23.5				
COP 43B	S1	2.5	4.0	7.3	48.6	45.8	5.6					(GW-GM) Well-graded gravel w/ silt and sand
COP 43B	S2	5.0	6.5	7.5	42.3	53.6	4.1		2.6	NFS		(SW) Well-graded sand w/ gravel
COP 43B	S3	7.5	9.0	45.8				30.9				
COP 43B	S4	10.0	11.5	46.5	8.5	74.3	17.2		6.6	F2		(SM) Silty sand
COP 43B	S5	15.0	16.5	27.4								
COP 43B	S6	20.0	21.5	7.3								
COP 44A	S1	2.5	4.0	5.0	57.6	38.2	4.2					(GW) Well-graded gravel w/ sand
COP 44A	S2	5.0	6.5	7.2	47.6	47.5	4.9		3.2	S1		(GW) Well-graded gravel w/ sand
COP 44A	S3	7.5	9.0	6.7	53.3	43.2	3.5					(GW) Well-graded gravel w/ sand
COP 44A	S4	10.0	11.5	8.9								
COP 44A	S5	15.0	16.5	26.9				62.7				
COP 44A	S6	20.0	21.5	31.8								
COP 44B	S1	2.5	4.0	8.0	58.9	36.3	4.8					(GW) Well-graded gravel w/ sand
COP 44B	S2	5.0	6.5	7.7	47.1	47.7	5.2		3.6	S2		(SW-SM) Well-graded sand w/ silt and gravel
COP 44B	S3	7.5	9.0	8.6								
COP 44B	S4	10.0	11.5	9.3	43.9	53.7	2.4					(SP) Poorly-graded sand w/ gravel
COP 44B	S5	15.0	16.5	25.8				20.1				
COP 44B	S6	20.0	21.5	23.8								
COP 45A	S1	2.5	4.0	7.6	45.3	47.7	7.0					(SW-SM) Well-graded sand w/ silt and gravel
COP 45A	S2	5.0	6.5	25.3	2.9	58.1	39.0		12.0	F2		(SM) Silty sand
COP 45A	S3	7.5	9.0	29.2								
COP 45A	S4A	10.0	11.0	8.7								
COP 45A	S4B	11.0	11.5	20.4								
COP 45A	S5	15.0	16.5	7.1	55.9	42.2	1.9					(GP) Poorly-graded gravel w/ sand
COP 45A	S6	20.0	21.5	15.5	33.3	76.6	1.5			 		(c.) . Sorry Braded Braver W/ Suria
301 437	- 00	20.0	21.0	13.3								
COP 45B	S1	2.5	4.0	6.6	54.3	41.5	4.2			+		(GW) Well-graded gravel w/ sand
COP 45B	S2	5.0	6.5	7.3	44.4	49.0	6.6		4.7	S2		(SW-SM) Well-graded sand w/ silt and gravel
COF 43B	32	5.0	0.0	7.5	44.4	43.0	0.0		4./	34		(200-2001) Macii-Rianen 20110 M/ 2111 gila Rianei

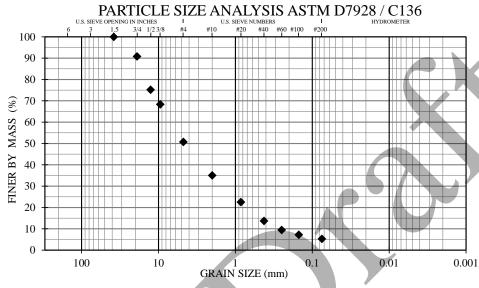
Summary of Laboratory Test Results

USFWS Fish Passage Improvements NGE-TFT Project #:5138-18

00D 45D	00	7.5	0.0	40.5	1	l	1	ı		ı	T
COP 45B	S3	7.5	9.0	18.5				0.1.			
COP 45B	S4	10.0	11.5	42.0				34.7			
COP 45B	S5	15.0	16.5	6.9							
CAB 2A	S1	2.5	4.0	10.5	56.8	36.1	7.1				(GW-GM) Well-graded gravel w/ silt and sand
CAB 2A	S2	5.0	6.5	10.1							
CAB 2A	S3	7.5	9.0	12.0	27.9	64.7	7.4		5.0	S2	(SW-SM) Well-graded sand w/ silt and gravel
CAB 2A	S4	10.0	11.5	7.6							
CAB 2A	S5	15.0	16.5	26.4				67.9			
CAB 2A	S6	20.0	21.5	11.7							
CAB 2B	S1	2.5	4.0	26.4				64.2			
CAB 2B	S2	5.0	6.5	13.9							
CAB 2B	S3	7.5	9.0	10.8	48.0	47.9	4.1		2.4	PFS	(GW) Well-graded gravel w/ sand
CAB 2B	S4	10.0	11.5	11.0							
CAB 2B	S5	15.0	16.5	26.3				60.1			
CAB 2B	S6	20.0	21.5	10.6							
SHER 1A	S1	2.5	4.0	4.7	52.9	44.3	2.8				(GP) Poorly-graded gravel w/ sand
SHER 1A	S2	5.0	6.5	6.5							
SHER 1A	S3	7.5	9.0	16.4	5.5	83.9	10.6		5.1	S2	(SW-SM) Well-graded sand w/ silt
SHER 1A	S4	10.0	11.5	13.6							
SHER 1A	S5	12.5	14.0	10.6	21.1	68.7	10.2		5.4	S2	(SP-SM) Poorly-graded sand w/ silt and gravel
SHER 1A	S6	15.0	16.5	15.1							
SHER 1A	S7	20.0	21.5	18.6							
									1		
SHER 1B	S1	2.5	4.0	8.5	44.9	49.2	5.9				(SW-SM) Well-graded sand w/ silt and gravel
SHER 1B	S2	5.0	6.5	4.7	41.1	50.5	8.4				(SW-SM) Well-graded sand w/ silt and gravel
SHER 1B	S3	7.5	9.0	7.7	14.5	69.2	16.3		11.1	F2	(SM) Silty sand
SHER 1B	S4	10.0	11.5	9.6							
SHER 1B	S5	12.5	14.0	20.0				40.6			
SHER 1B	S6	15.0	16.5	10.2							
SHER 1B	S7	20.0	21.5	11.2							
211-111					-1			1		ı	l l

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	СН
REVIEWED BY:	SAM

% GRAVEL	49.3		USCS	GW-GM
% SAND	45.4	U	SACOE FC	N/A
% SILT/CLAY	5.3	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	2.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		20	6.6
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1	.2
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	91	
12.70	1/2"	75	
9.50	3/8"	68	
4.75	#4	51	
2.00	#10	35	
0.85	#20	23	
0.43	#40	14	
0.25	#60	9	
0.15	#100	7	
0.075	#200	5.3	
	152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 38.10 1.5" 100 19.00 3/4" 91 12.70 1/2" 75 9.50 3/8" 68 4.75 #4 51 2.00 #10 35 0.85 #20 23 0.43 #40 14 0.25 #60 9 0.15 #100 7

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																				
140								4							#					
(F) 20 135																				
DRY DENSITY (pcf) 135 130 125											=				#					
DEN 130																				
Z 125																				
120																				
115								_					_		10]
0 2 4 6 8 10 12 14 1 MOISTURE CONTENT (%)										16										

HYDROMETER RESULT

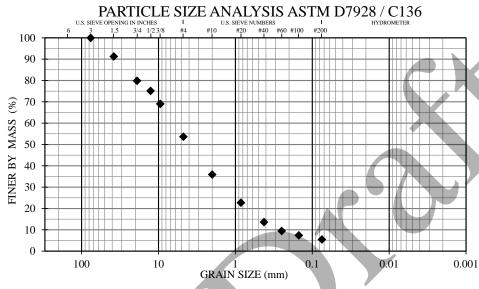
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

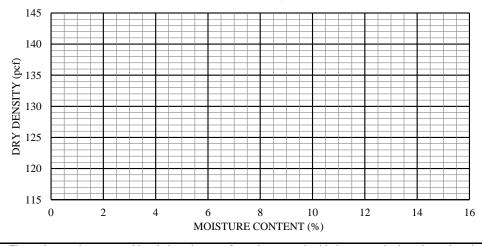

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	СН
REVIEWED BY:	SAM

% GRAVEL_	46.3	_	USCS	SW-SM
% SAND	48.3	U	SACOE FC	N/A
% SILT/CLAY	5.4	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	6.0	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIEN	VT (C _u)		24	1.6
COEFFICIENT OF GRADAT	ΓΙΟΝ (C _c)	1	.2
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTE	NT. (co	orrected)	N/A	



1	GRA	VEL		SAND)	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
l	38.10	1.5"	91	
	19.00	3/4"	80	
	12.70	1/2"	75	
	9.50	3/8"	69	
	4.75	#4	54	
	2.00	#10	36	
	0.85	#20	23	
	0.43	#40	14	
	0.25	#60	9	
	0.15	#100	7	
	0.075	#200	5.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

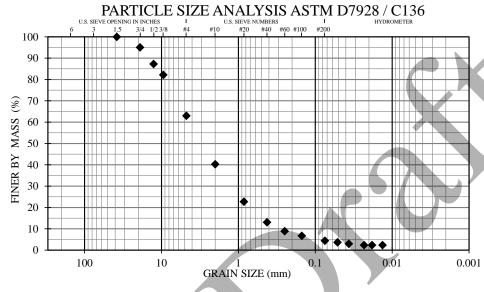
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

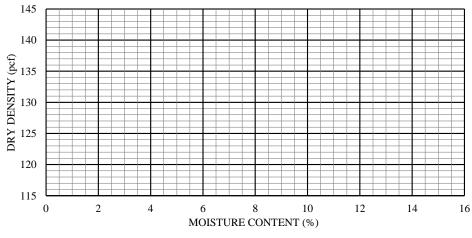

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	37.0		USCS	SW			
% SAND	58.6	U	SACOE FC	NFS			
% SILT/CLAY	4.4	% PASS. 0.02 mm		2.3			
% MOIST. CONTENT	8.5	% PASS	. 0.002 mm	N/A			
UNIFORMITY COEFFICI	14.8						
COEFFICIENT OF GRAD	1.4						
ASTM D1557 (uncorrected	N/A						
ASTM D4718 (corrected)	N/A						
OPTIMUM MOIST. CONT	TENT. (co	OPTIMUM MOIST. CONTENT. (corrected)					



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	95	
	12.70	1/2"	87	
	9.50	3/8"	82	
	4.75	#4	63	
	2.00	#10	40	
	0.85	#20	23	
	0.43	#40	13	
	0.25	#60	9	
	0.15	#100	7	
	0.075	#200	4.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

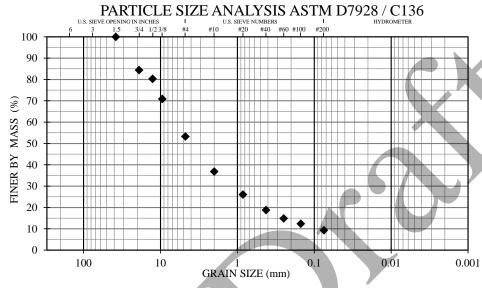
ELAPSED	DIAMETER	TOTAL %			
TIME (MIN)	(mm)	PASSING			
0					
1	0.0514	3.6			
2	0.0366	3.0			
5	0.0232	2.3			
8	0.0183	2.3			
15	0.0134	2.3			
30					
60					
250					
1440					

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

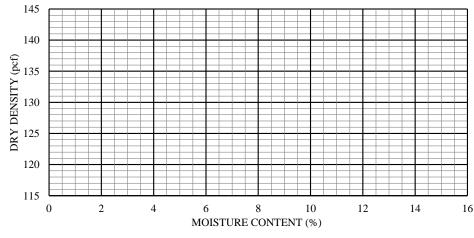
Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis


PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1B
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	46.8		USCS	GW-GM
% SAND	43.9	U	SACOE FC	N/A
% SILT/CLAY	9.3	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	8.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	71.9			
COEFFICIENT OF GRAD	2.7			
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	orrected)	N/A	

1	GRA	VEL		SAND	1	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	84	
12.70	1/2"	80	
9.50	3/8"	71	
4.75	#4	53	
2.00	#10	37	
0.85	#20	26	
0.43	#40	19	
0.25	#60	15	
0.15	#100	12	
0.075	#200	9.3	

HYDROMETER RESULT

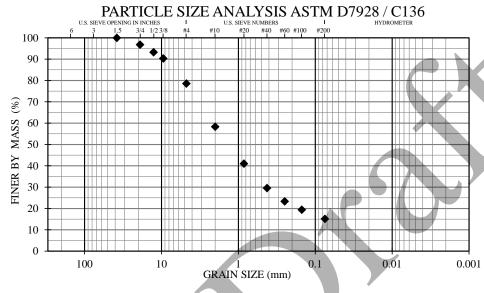
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

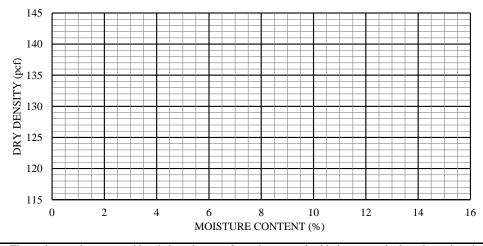

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Silty sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

				~
% GRAVEL_	21.5		USCS	SM
% SAND	63.4	U	SACOE FC	N/A
% SILT/CLAY	15.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	4.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			UNKN	OWN
COEFFICIENT OF GRADATION (C _c)			UNKN	OWN
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



	GRA	VEL		SAND)			_
COBBLES	Coarse	Fine	Coarse	Medium		Fine	SILT or CLAY	

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
h	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	97	
	12.70	1/2"	93	
	9.50	3/8"	90	
	4.75	#4	79	
	2.00	#10	58	
	0.85	#20	41	
	0.43	#40	30	
	0.25	#60	23	
	0.15	#100	19	
	0.075	#200	15.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

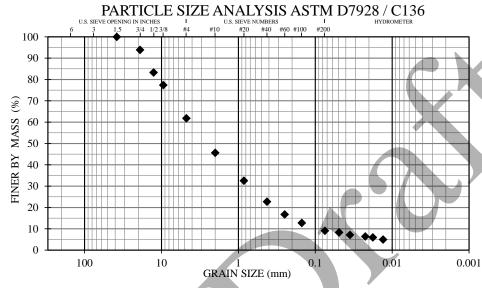
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

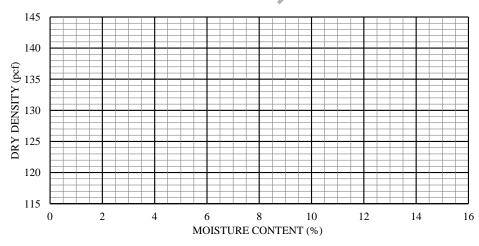

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	38.2		USCS	SW-SM
% SAND	52.7	U	SACOE FC	F2
% SILT/CLAY	9.1	% PAS	S. 0.02 mm	6.3
% MOIST. CONTENT	9.3	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICII	ENT (C _u)		47	7.4
COEFFICIENT OF GRADA	ATION (0	$C_{\rm c}$)	1	.3
ASTM D1557 (uncorrected))		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	94	
12.70	1/2"	83	
9.50	3/8"	77	
4.75	#4	62	
2.00	#10	46	
0.85	#20	33	
0.43	#40	23	
0.25	#60	17	
0.15	#100	13	
0.075	#200	9.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

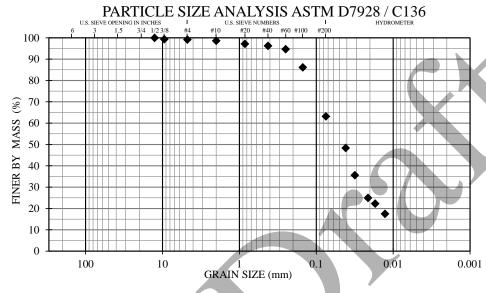
ELAPSED	DIAMETER	TOTAL %				
TIME (MIN)	(mm)	PASSING				
0						
1	0.0490	8.3				
2	0.0353	7.1				
5	0.0223	6.4				
8	0.0179	5.9				
15	0.0131	5.0				
30						
60						
250						
1440						

HYDRAULIC COND.	N/A	
(ASTM D2434)		
DEGRADATION	N/A	
(ATM T-313)		
PLASTICITY INDEX	N/A	
ASTM 4318	IN/A	

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

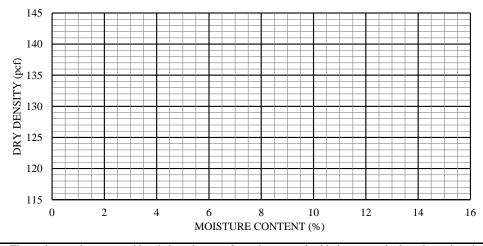

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP1B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Sandy silt
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	0.8		USCS	ML	
% SAND	36.0	U	SACOE FC	F4	
% SILT/CLAY	63.2	% PAS	S. 0.02 mm	24.8	
% MOIST. CONTENT	25.3	% PASS	. 0.002 mm	N/A	
UNIFORMITY COEFFICIENT (C _u)			UNKNOWN		
COEFFICIENT OF GRADATION (C _c)			UNKN	OWN	
ASTM D1557 (uncorrected)		N/A		
ASTM D4718 (corrected)			N/A		
OPTIMUM MOIST. CONT	ENT. (co	rrected)	N/A		



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"		
	19.00	3/4"		
	12.70	1/2"	100	
	9.50	3/8"	99	
	4.75	#4	99	
	2.00	#10	99	
	0.85	#20	97	
	0.43	#40	96	
	0.25	#60	95	
	0.15	#100	86	
	0.075	#200	63.2	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

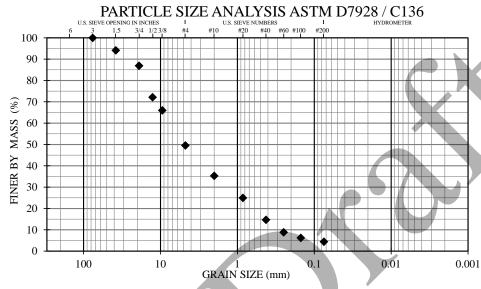
ELAPSED DIAMETER		TOTAL %				
TIME (MIN)	(mm)	PASSING				
0						
1	0.0414	48.3				
2	0.0316	35.6				
5	0.0212	24.9				
8	0.0171	22.3				
15	0.0128	17.5				
30						
60						
250						
1440		_				

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

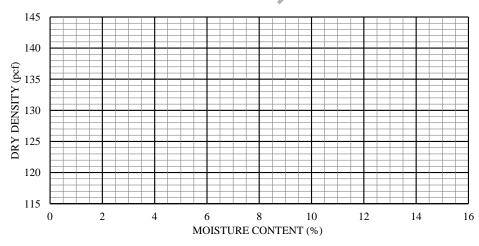

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР9А
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Poorly-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	50.4		USCS	GP
% SAND	45.2	U.	SACOE FC	N/A
% SILT/CLAY	4.4	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	7.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			27.2	
COEFFICIENT OF GRADATION (C _c)			0.9	9
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	orrected)	N/A	



1	GRA	VEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fin	ne	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mr	n) SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"	100	
38.10	1.5"	94	
19.00	3/4"	87	
12.70	1/2"	72	
9.50	3/8"	66	
4.75	#4	50	
2.00	#10	35	
0.85	#20	25	
0.43	#40	15	
0.25	#60	9	
0.15	#100	6	
0.075	#200	4.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

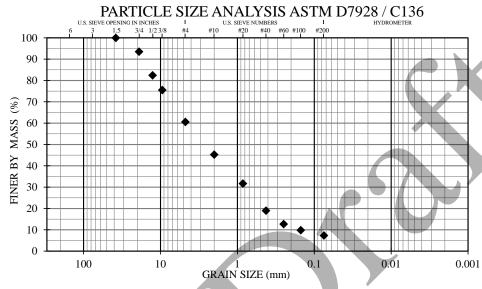
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

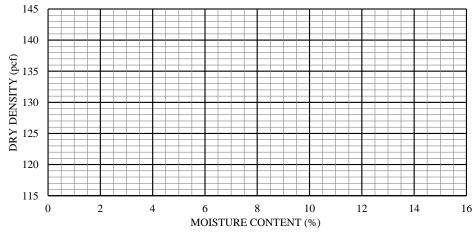

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP9A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Poorly-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	39.4		USCS	SP-SM
% SAND	53.2	U	SACOE FC	N/A
% SILT/CLAY	7.4	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	3.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	29.8			
COEFFICIENT OF GRAD	0.	.9		
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	ГЕНТ. (со	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	93	
	12.70	1/2"	82	
	9.50	3/8"	75	
	4.75	#4	61	
	2.00	#10	45	
	0.85	#20	32	
	0.43	#40	19	
	0.25	#60	13	
	0.15	#100	10	
	0.075	#200	7.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

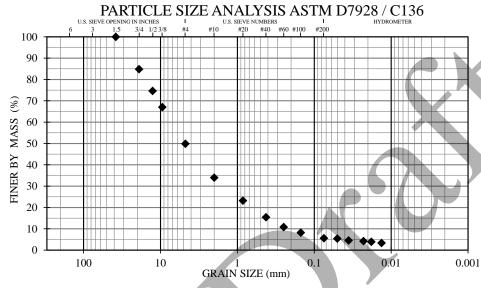
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР9А
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	50.1		USCS	GW-GM
% SAND	44.3	U	SACOE FC	S1
% SILT/CLAY	5.6	% PAS	S. 0.02 mm	4.1
% MOIST. CONTENT	6.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIE	NT (C _u)		34	4.4
COEFFICIENT OF GRADA	1	.5		
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTI	ENT. (co	orrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	85	
	12.70	1/2"	75	
	9.50	3/8"	67	
	4.75	#4	50	
	2.00	#10	34	
	0.85	#20	23	
	0.43	#40	15	
	0.25	#60	11	
	0.15	#100	8	
	0.075	#200	5.6	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																		
140							4						#					
(F) 20 135																		
DRY DENSITY (pcf) 135 130 125									=				#					
DEN 130																		
Z 125																		
120																		
115							_				_		10]
0 2 4 6 8 10 12 14 MOISTURE CONTENT (%)							4		16									

HYDROMETER RESULT

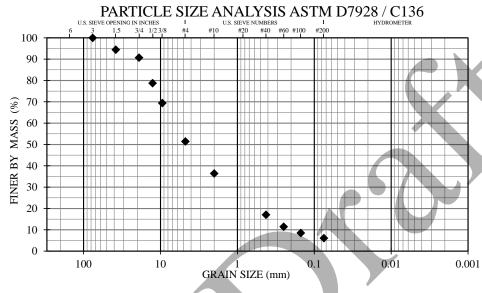
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0502	5.4
2	0.0358	4.5
5	0.0229	4.2
8	0.0181	3.9
15	0.0134	3.3
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

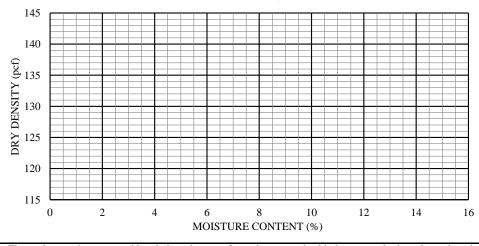

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР9В
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	48.6		USCS	GW-GM
% SAND	45.3	U	SACOE FC	N/A
% SILT/CLAY	6.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	2.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	28.0			
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	2	.1
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
ı	38.10	1.5"	94	
	19.00	3/4"	91	
	12.70	1/2"	79	
	9.50	3/8"	69	
	4.75	#4	51	
	2.00	#10	36	
	0.85	#20	-54	
	0.43	#40	17	
	0.25	#60	11	
	0.15	#100	8	
	0.075	#200	6.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

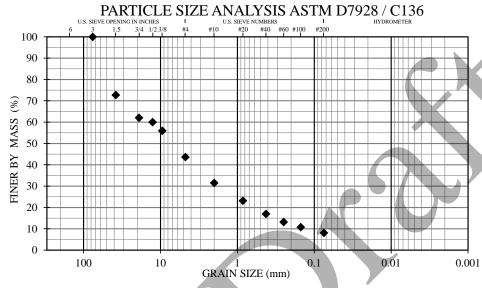
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

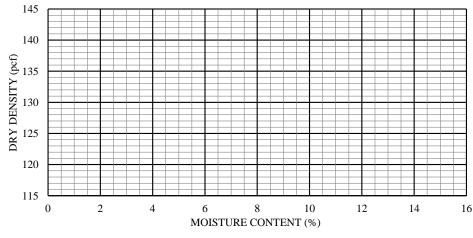
Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis


PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР9В
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	56.4		USCS	GW-GM
% SAND	35.5	U	SACOE FC	N/A
% SILT/CLAY	8.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	3.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	99.1			
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$)	2	2.0
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	•		N/A	
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	rrected)	N/A	

1	GRA	VEL		SAND		
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
l	38.10	1.5"	73	
	19.00	3/4"	62	
	12.70	1/2"	60	
	9.50	3/8"	56	
	4.75	#4	44	
	2.00	#10	31	
	0.85	#20	23	
	0.43	#40	17	
	0.25	#60	13	
	0.15	#100	11	
	0.075	#200	8.1	

HYDROMETER RESULT

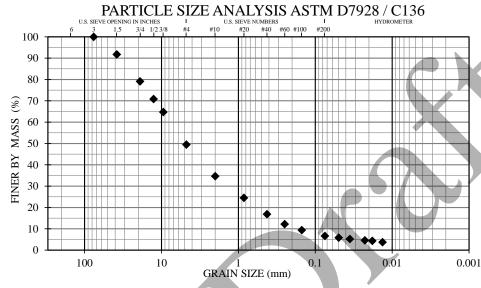
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

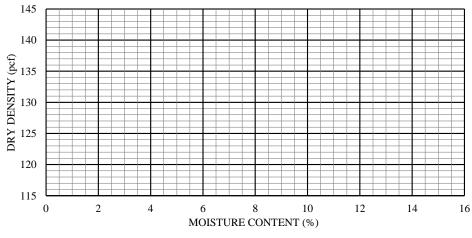

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР9В
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	50.5		USCS	GW-GM
% SAND	42.8	U	SACOE FC	S1
% SILT/CLAY	6.7	% PAS	S. 0.02 mm	4.5
% MOIST. CONTENT	6.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	46.6			
COEFFICIENT OF GRAD	1.6			
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
١	76.20	3"	100	
Į	38.10	1.5"	92	
	19.00	3/4"	79	
	12.70	1/2"	71	
J	9.50	3/8"	65	
	4.75	#4	49	
	2.00	#10	35	
	0.85	#20	25	
	0.43	#40	17	
	0.25	#60	12	
	0.15	#100	9	
	0.075	#200	6.7	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

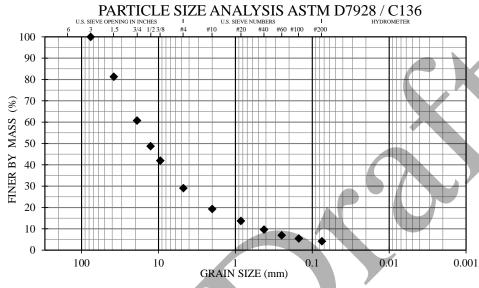
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0497	5.8
2	0.0355	5.2
5	0.0226	4.6
8	0.0181	4.3
15	0.0134	3.7
30		
60		
250		
1440		

HYDRAULIC COND.	N/A	
(ASTM D2434)		
DEGRADATION	N/A	
(ATM T-313)	IN/A	
PLASTICITY INDEX	N/A	
ASTM 4318	IN/A	

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

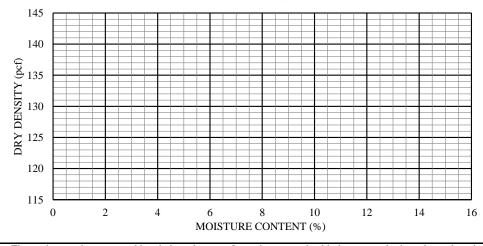
Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Poorly-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM


% GRAVEL	71.0		USCS	GP
% SAND	24.9	US	SACOE FC	N/A
% SILT/CLAY	4.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	2.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	40.1			
COEFFICIENT OF GRAD	3.	0		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			

1	GRA	VEL		SAND)	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or

r CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
ı	38.10	1.5"	81	
	19.00	3/4"	61	
	12.70	1/2"	49	
	9.50	3/8"	42	
	4.75	#4	29	
	2.00	#10	19	
	0.85	#20	14	
	0.43	#40	10	
	0.25	#60	7	
	0.15	#100	5	
	0.075	#200	4.1	

HYDROMETER RESULT

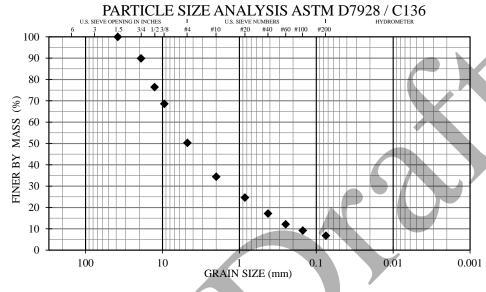
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A	
(ASTM D2434)	IV/A	
DEGRADATION	N/A	
(ATM T-313)	IN/A	
PLASTICITY INDEX	N/A	
ASTM 4318	IN/A	

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

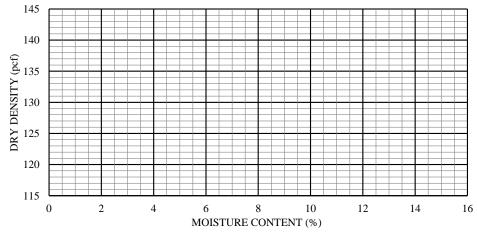

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	49.8		USCS	GW-GM
% SAND	43.5	U	SACOE FC	N/A
% SILT/CLAY	6.7	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	6.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	40.9			
COEFFICIENT OF GRAD	1	.7		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



	GRA	VEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or C	LAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	90	
12.70	1/2"	76	
9.50	3/8"	69	
4.75	#4	50	
2.00	#10	34	
0.85	#20	25	
0.43	#40	17	
0.25	#60	12	
0.15	#100	9	
0.075	#200	6.7	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

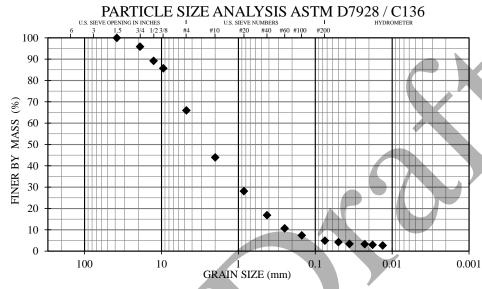
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	34.0		USCS	SW
_			_	
% SAND _	61.1	. U	SACOE FC _	S2
% SILT/CLAY _	4.9	% PAS	S. 0.02 mm	3.1
% MOIST. CONTENT	37.9	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	17.5			
COEFFICIENT OF GRAD	1.	1		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVI	Е	SIEVE	TOTAL %	SPECIFICATION
SIZE (m	nm)	SIZE (U.S.)	PASSING	(% PASSING)
152.4	0	6"		
76.2	0	3"		
38.1	0	1.5"	100	
19.0	0	3/4"	96	
12.70	0	1/2"	89	
9.50)	3/8"	86	
4.75	i	#4	66	
2.00)	#10	44	
0.85	;	#20	28	
0.43	3	#40	17	
0.25	5	#60	11	
0.15	i	#100	7	
0.07	5	#200	4.9	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																			=	\exists
140																			=	
(J) (135																				
DRY DENSITY (pcf) 135 130 125 125																			#	
DE N 130																			=	
125				Ė															=	
120				F															=	
115																				
	0	2		4	1	MC	TU	RE	8 E C	ITE	EN'	1 Γ (9		1	2		1	4		16
												`								

HYDROMETER RESULT

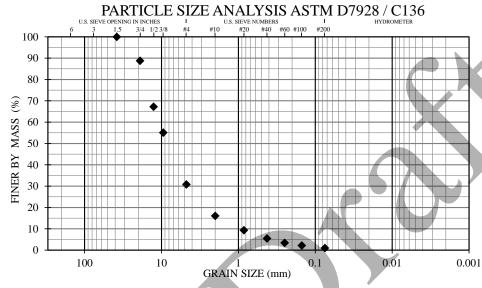
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0500	4.2
2	0.0360	3.4
5	0.0228	3.3
8	0.0180	3.0
15	0.0133	2.6
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

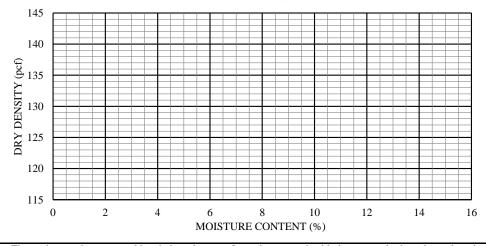

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20A
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	69.2		USCS	GW
% SAND	29.8	U	SACOE FC	N/A
% SILT/CLAY	1.0	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	5.9	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		11.	.2
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$)	2.0	0
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND)	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
ı	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	89	
	12.70	1/2"	67	
	9.50	3/8"	55	
	4.75	#4	31	
	2.00	#10	16	
	0.85	#20	9	
	0.43	#40	5	
	0.25	#60	3	
	0.15	#100	2	
	0.075	#200	1.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	39.6	_	USCS	SW-SM
% SAND	51.5	U.	SACOE FC	N/A
% SILT/CLAY	8.9	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	5.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			46.7	
COEFFICIENT OF GRADATION (C _c)			1.	.2
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTENT. (corrected)			N/A	

SIZE (mm)

152.40

76.20

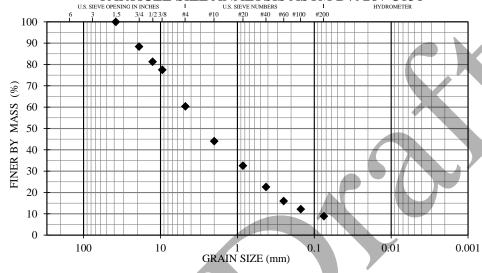
38.10

12.70

9.50

2.00

0.85


0.43

0.25

0.15

0.075

PARTICLE SIZE ANALYSIS ASTM D7928 / C136

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

HYDROMETER RESULT

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

SIEVE ANALYSIS RESULT

SIZE (U.S.)

6"

3"

1.5'

1/2'

3/8

#4

#10

#20

#40

#60

#100

#200

TOTAL %

PASSING

100

88

81

77

60

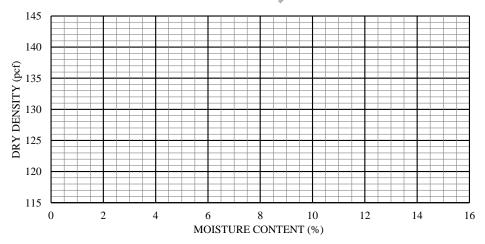
44

33

23

16

12


8.9

SPECIFICATION

(% PASSING)

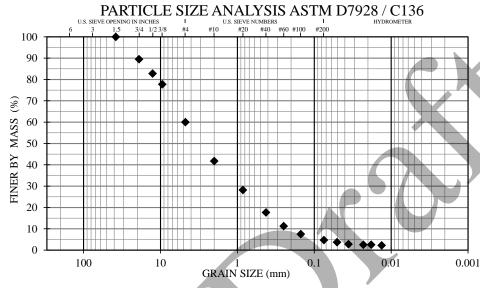
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

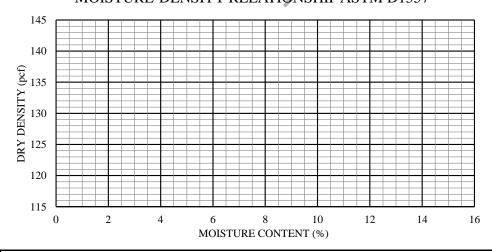

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Poorly-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	40.0		USCS	SP
% SAND	55.3	US	SACOE FC	NFS
% SILT/CLAY	4.7	% PAS	S. 0.02 mm	2.6
% MOIST. CONTENT	9.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			21.9	
COEFFICIENT OF GRADATION (C _c)			1.0	0
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTENT. (corrected)			N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	90	
12.70	1/2"	83	
9.50	3/8"	78	
4.75	#4	60	
2.00	#10	42	
0.85	#20	28	
0.43	#40	18	
0.25	#60	11	
0.15	#100	8	
0.075	#200	4.7	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

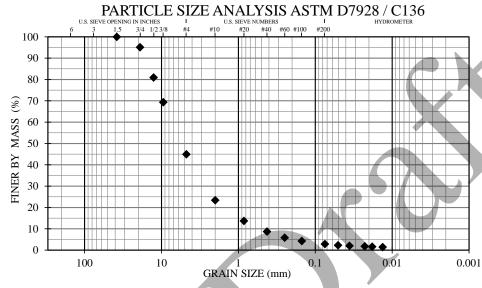
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0505	3.7
2	0.0360	2.8
5	0.0230	2.5
8	0.0182	2.5
15	0.0133	2.2
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	55.1		USCS	GW
% SAND	42.1	US	SACOE FC	PFS
% SILT/CLAY	2.8	% PAS	S. 0.02 mm	1.7
% MOIST. CONTENT	7.0	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			14.3	
COEFFICIENT OF GRADATION (C _c)			2.	.0
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	N/A			

1	GRA	VEL		SAND	1	
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	95	
12.70	1/2"	81	
9.50	3/8"	69	
4.75	#4	45	
2.00	#10	23	
0.85	#20	14	
0.43	#40	9	
0.25	#60	6	
0.15	#100	4	
0.075	#200	2.8	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																			=	\exists
140																			=	
(J) (135																				
DRY DENSITY (pcf) 135 130 125 125																			#	
DE N 130																			=	
125				Ė															=	
120				F															=	
115																				
	0	2		4	1	MC	TU	RE	8 E C	ITE	EN'	1 Γ (9		1	2		1	4		16
												•								

HYDROMETER RESULT

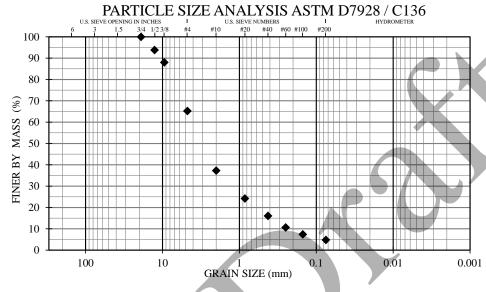
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0505	2.3
2	0.0360	2.0
5	0.0228	1.8
8	0.0182	1.6
15	0.0133	1.4
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

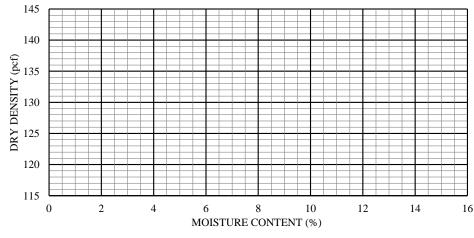
Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis


PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP20B
NUMBER/ DEPTH:	S6 / 15 - 16.5'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	34.8		USCS	SW
% SAND	60.4	U:	SACOE FC	N/A
% SILT/CLAY	4.8	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	11.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		18	.4
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$)	1.	9
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

	GRA	VEL		SAND)		
COBBLES	Coarse	Fine	Coarse	Medium		Fine	SILT or CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
Ì	76.20	3"		
Į	38.10	1.5"		
	19.00	3/4"	100	
	12.70	1/2"	94	
ø	9.50	3/8"	88	
	4.75	#4	65	
	2.00	#10	37	
	0.85	#20	24	
	0.43	#40	16	
	0.25	#60	11	
	0.15	#100	7	
	0.075	#200	4.8	

HYDROMETER RESULT

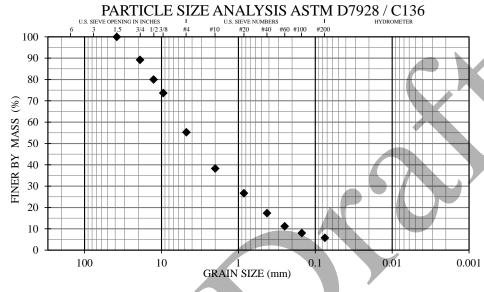
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

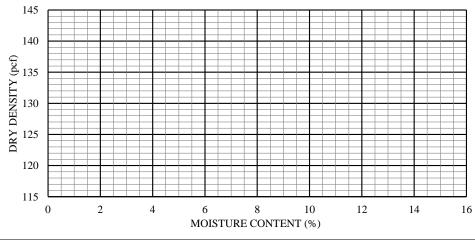

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	44.7		USCS	SW-SM		
% SAND	49.5	U	SACOE FC	N/A		
% SILT/CLAY	5.8	% PAS	S. 0.02 mm	N/A		
% MOIST. CONTENT	4.0	% PASS	% PASS. 0.002 mm			
UNIFORMITY COEFFICI	28.2					
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1.1			
ASTM D1557 (uncorrected)		N/A			
ASTM D4718 (corrected)	N/A					
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A			



ı		GRA	VEL		SAND		
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION				
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)				
	152.40	6"						
	76.20	3"						
ı	38.10	1.5"	100					
	19.00	3/4"	89					
	12.70	1/2"	80					
	9.50	3/8"	74					
	4.75	#4	55					
	2.00	#10	38					
	0.85	#20	27					
	0.43	#40	17					
	0.25	#60	11					
	0.15	#100	8					
	0.075	#200	5.8					

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

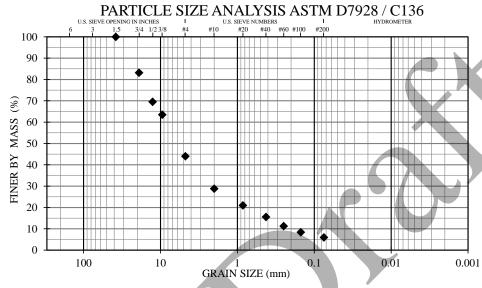
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	56.0		USCS	GW-GM		
% SAND	38.0	U	SACOE FC	N/A		
% SILT/CLAY	6.0	% PAS	S. 0.02 mm	N/A		
% MOIST. CONTENT	5.8	% PASS	. 0.002 mm	N/A		
UNIFORMITY COEFFICI	41.8					
COEFFICIENT OF GRAD	ATION (C	C _c)	2.7			
ASTM D1557 (uncorrected)		N/A			
ASTM D4718 (corrected)	N/A					
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A			

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
h	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	83	
	12.70	1/2"	70	
	9.50	3/8"	63	
	4.75	#4	44	
	2.00	#10	29	
	0.85	#20	21	
	0.43	#40	16	
	0.25	#60	11	
	0.15	#100	8	
	0.075	#200	6.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																				\exists
140																				
(f) Dct 125																				
DRY DENSITY (pcf) 135 130 125																				
130		=																		
125 22 125		_																		\exists
□ 120																				
115																				
	0	2		4	N	MC	TU	RE	E C	ITE	EN	1 Γ (⁶		1	2		1	4		16

HYDROMETER RESULT

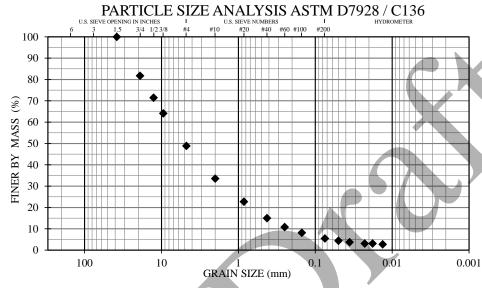
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

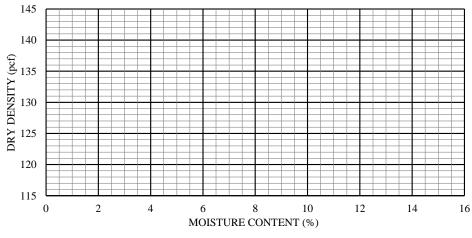

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22A
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	51.1		USCS	GW-GM
% SAND	43.4	U	SACOE FC	S1
% SILT/CLAY	5.5	% PAS	S. 0.02 mm	3.2
% MOIST. CONTENT	6.6	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		3'	7.4
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$	1	.5
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ГЕНТ. (со	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm) SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	82	
12.70	1/2"	71	
9.50	3/8"	64	
4.75	#4	49	
2.00	#10	34	
0.85	#20	23	
0.43	#40	15	
0.25	#60	11	
0.15	#100	8	
0.075	#200	5.5	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

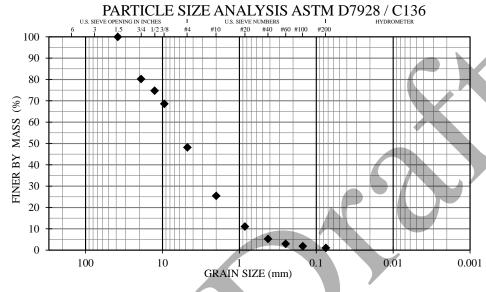
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0500	4.4
2	0.0357	3.7
5	0.0228	3.1
8	0.0180	3.1
15	0.0133	2.8
30		
60		
250		
1440		

HYDRAULIC COND.	N/A	
(ASTM D2434)	IV/A	
DEGRADATION	N/A	
(ATM T-313)	IN/A	
PLASTICITY INDEX	N/A	
ASTM 4318	IN/A	

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

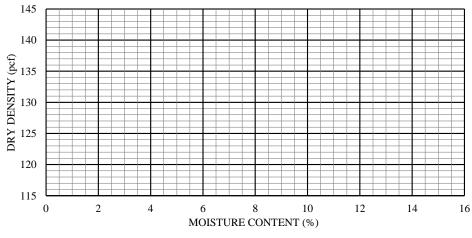

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22A
NUMBER/ DEPTH:	S6 / 15 - 16.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	51.8		USCS	GW
% SAND	47.2	US	SACOE FC	N/A
% SILT/CLAY	1.0	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	4.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		9.	7
COEFFICIENT OF GRADATION (C _c)			1.	1
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	orrected)	N/A	



1	GRA	VEL		SAND	1	
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
ı	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	80	
	12.70	1/2"	75	
	9.50	3/8"	69	
	4.75	#4	48	
	2.00	#10	25	
	0.85	#20	11	
	0.43	#40	5	
	0.25	#60	3	
	0.15	#100	2	
	0.075	#200	1.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

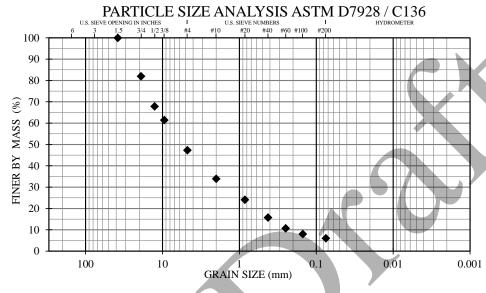
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

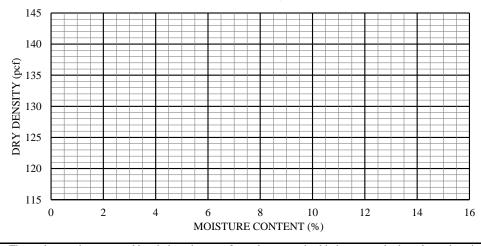

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22B
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	52.7		USCS	GW-GM			
% SAND	41.3	U	SACOE FC	N/A			
% SILT/CLAY	6.0	% PAS	S. 0.02 mm	N/A			
% MOIST. CONTENT	7.1	% PASS	. 0.002 mm	N/A			
UNIFORMITY COEFFICI		40.2					
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1.2				
ASTM D1557 (uncorrected)		N/A				
ASTM D4718 (corrected)	N/A						
OPTIMUM MOIST. CONT	N/A						



1	GRA	VEL		SAND	1	
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	82	
	12.70	1/2"	68	
	9.50	3/8"	61	
	4.75	#4	47	
	2.00	#10	34	
	0.85	#20	24	
	0.43	#40	16	
	0.25	#60	11	
	0.15	#100	8	
	0.075	#200	6.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

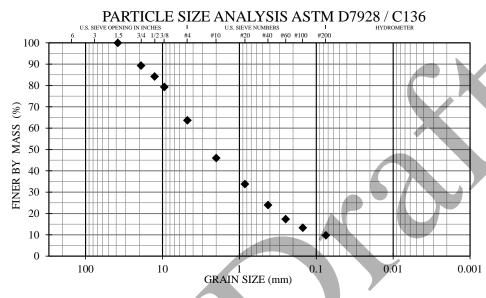
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	36.3		USCS	SW-SM			
% SAND	54.0	U	SACOE FC	N/A			
% SILT/CLAY	9.7	% PAS	S. 0.02 mm	N/A			
% MOIST. CONTENT	8.8	% PASS	. 0.002 mm	N/A			
UNIFORMITY COEFFICI		52.0					
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$	1.4				
ASTM D1557 (uncorrected)		N/A				
ASTM D4718 (corrected)	N/A						
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A				

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
l	38.10	1.5"	100	
	19.00	3/4"	89	
	12.70	1/2"	84	
	9.50	3/8"	79	
	4.75	#4	64	
	2.00	#10	46	
	0.85	#20	34	
	0.43	#40	24	
	0.25	#60	17	
	0.15	#100	13	
	0.075	#200	9.7	

SIEVE ANALYSIS RESULT

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

115 0	2	,		4		6	TU	8			0		1	2		1	4		1
120																			
125																			_
135 130 125																			
135																			Ξ
140																			_
145																			Ξ

HYDROMETER RESULT

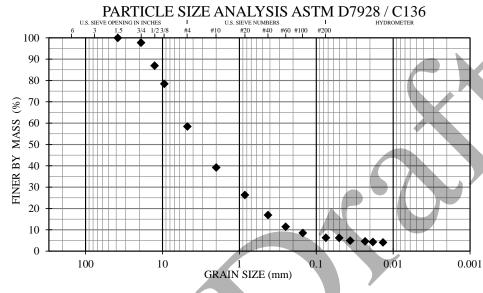
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

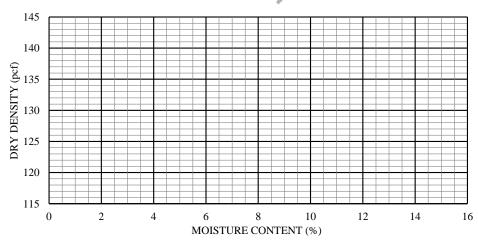

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	41.5		USCS	SW-SM
% SAND	52.2	U	SACOE FC	S2
% SILT/CLAY	6.3	% PAS	S. 0.02 mm	4.3
% MOIST. CONTENT	7.0	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	25	5.5		
COEFFICIENT OF GRAD	1	.4		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ГЕНТ. (со	rrected)	N/A	



ı		GRA	VEL		SAND		
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	98	
	12.70	1/2"	87	
	9.50	3/8"	78	
	4.75	#4	58	
	2.00	#10	39	
	0.85	#20	26	
	0.43	#40	17	
	0.25	#60	11	
	0.15	#100	9	
	0.075	#200	6.3	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

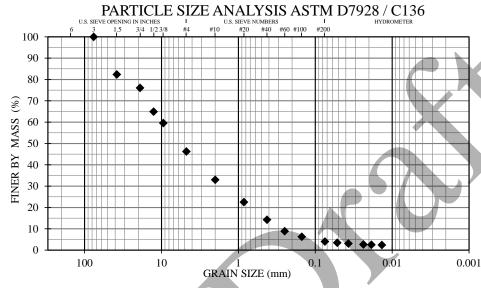
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0503	6.2
2	0.0363	4.9
5	0.0232	4.6
8	0.0183	4.3
15	0.0135	4.1
30		
60		
250		
1440		

HYDRAULIC COND.	N/A	
(ASTM D2434)		
DEGRADATION	N/A	
(ATM T-313)	IN/A	
PLASTICITY INDEX	N/A	
ASTM 4318	IN/A	

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

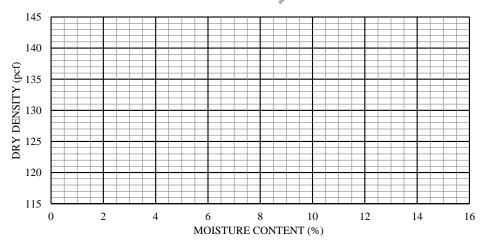

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP22B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	53.8		USCS	GW
% SAND	42.2	U	SACOE FC	PFS
% SILT/CLAY	4.0	% PAS	S. 0.02 mm	2.6
% MOIST. CONTENT	6.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			34.	.1
COEFFICIENT OF GRADATION (C _c)			1.0	0
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND	1	
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"	100	
38.10	1.5"	82	
19.00	3/4"	76	
12.70	1/2"	65	
9.50	3/8"	60	
4.75	#4	46	
2.00	#10	33	
0.85	#20	23	
0.43	#40	14	
0.25	#60	9	
0.15	#100	6	
0.075	#200	4.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

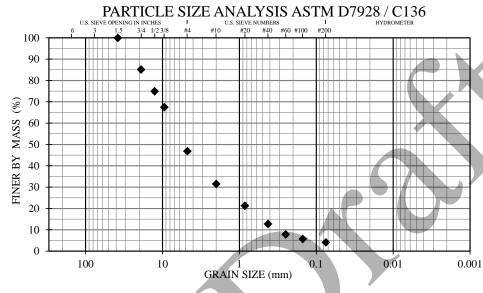
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0519	3.5
2	0.0371	3.1
5	0.0236	2.7
8	0.0187	2.5
15	0.0136	2.4
30		
60		
250		
1440		

HYDRAULIC COND.	N/A		
(ASTM D2434)			
DEGRADATION	NI/A		
(ATM T-313)	N/A		
PLASTICITY INDEX	N/A		
ASTM 4318	IN/A		

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

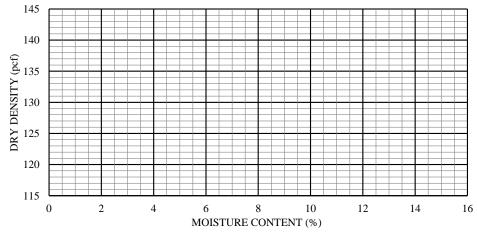

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	53.1		USCS	GW
% SAND	42.8	US	SACOE FC	N/A
% SILT/CLAY	4.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	3.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	23	.8		
COEFFICIENT OF GRAD	1.	3		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	N/A			



GODDY PG	GRAVEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	85	
	12.70	1/2"	75	
	9.50	3/8"	67	
	4.75	#4	47	
	2.00	#10	31	
	0.85	#20	21	
	0.43	#40	13	
	0.25	#60	8	
	0.15	#100	6	
	0.075	#200	4.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

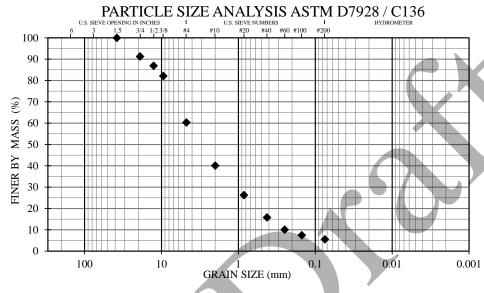
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

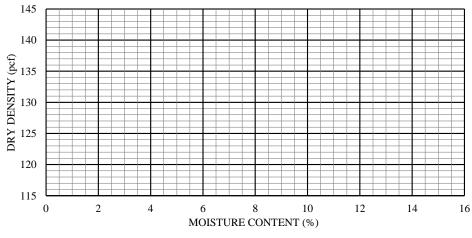

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	39.7	_	USCS	SW-SM
% SAND	54.8	U.	SACOE FC	N/A
% SILT/CLAY	5.5	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	4.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			19	0.1
COEFFICIENT OF GRADATION (C _c)			1.	.2
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTENT. (corrected)			N/A	



1		GRAVEL		SAND			
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	91	
	12.70	1/2"	87	
	9.50	3/8"	82	
	4.75	#4	60	
	2.00	#10	40	
	0.85	#20	26	
	0.43	#40	16	
	0.25	#60	10	
	0.15	#100	7	
	0.075	#200	5.5	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

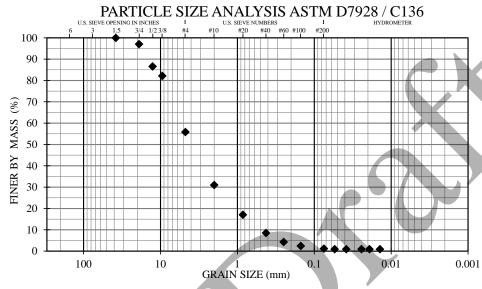
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

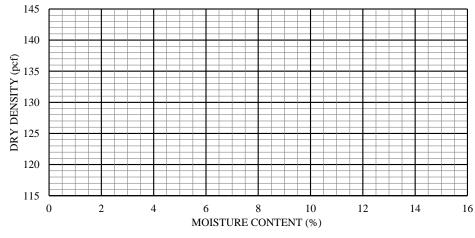
Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis


PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	44.2	_	USCS	SW
% SAND	54.6	U.	SACOE FC	NFS
% SILT/CLAY	1.2	% PAS	S. 0.02 mm	0.9
% MOIST. CONTENT	8.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	11	.0		
COEFFICIENT OF GRAD	1.	3		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			

		GRAVEL		SAND			
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
Ì	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	97	
	12.70	1/2"	87	
	9.50	3/8"	82	
	4.75	#4	56	
	2.00	#10	31	
	0.85	#20	17	
	0.43	#40	8	
	0.25	#60	4	
	0.15	#100	2	
	0.075	#200	1.2	

HYDROMETER RESULT

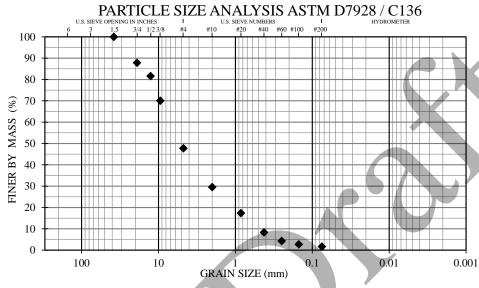
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0543	0.9
2	0.0384	0.9
5	0.0243	0.9
8	0.0192	0.9
15	0.0140	0.9
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

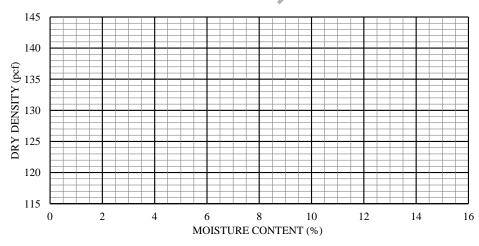

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25A
NUMBER/ DEPTH:	S5 / 12.5 - 14'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	52.2		USCS	GW
% SAND	46.1	U	SACOE FC	N/A
% SILT/CLAY	1.7	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	6.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	14	.6		
COEFFICIENT OF GRAD	1.	2		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTENT. (corrected)			N/A	



	GRAVEL		SAND				
COBBLES	Coarse	Fine	Coarse	Medium		Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	88	
	12.70	1/2"	82	
	9.50	3/8"	70	
	4.75	#4	48	
	2.00	#10	30	
	0.85	#20	17	
	0.43	#40	8	
	0.25	#60	4	
	0.15	#100	3	
	0.075	#200	1.7	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

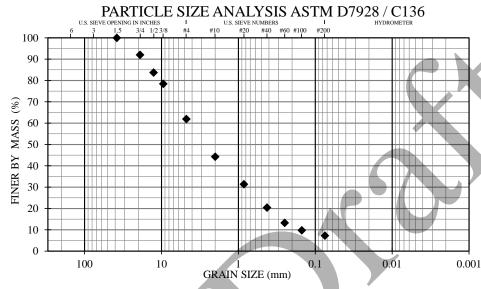
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

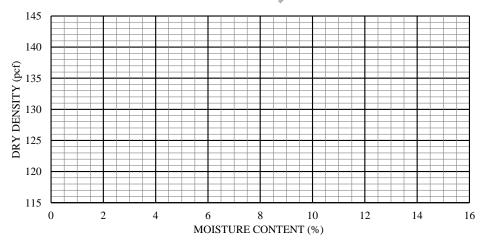
Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Poorly-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	38.1		USCS	SP-SM
% SAND	54.6	U	SACOE FC	N/A
% SILT/CLAY	7.3	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	3.2	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		28	3.5
COEFFICIENT OF GRADATION (C _c)			0.	.9
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRAVEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT


	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	92	
	12.70	1/2"	84	
	9.50	3/8"	78	
	4.75	#4	62	
	2.00	#10	44	
	0.85	#20	31	
	0.43	#40	20	
	0.25	#60	13	
	0.15	#100	10	
	0.075	#200	7.3	

ELAPSED	DIAMETER	IOTAL 70
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDROMETER RESULT

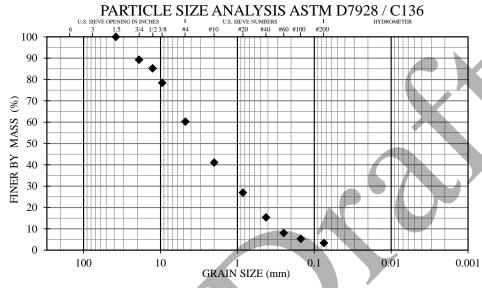
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Poorly-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	39.8		USCS	SP
% SAND	56.9	U	SACOE FC	N/A
% SILT/CLAY	3.3	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	8.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI		15.9		
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	0.	9
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND)	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	89	
	12.70	1/2"	85	
	9.50	3/8"	78	
	4.75	#4	60	
	2.00	#10	41	
	0.85	#20	27	
	0.43	#40	15	
	0.25	#60	8	
	0.15	#100	5	
	0.075	#200	3.3	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																	=					=	\exists
140																						#	
(F) 135																							
DRY DENSITY (pcf) 132 135 135 135 135 135 135 135 135 135 135																						#	
S 130																						#	
125																	=					#	
120																							
115																						#	
)	2	۷	1	1	40		TI	RE	8		TE	רואי	1 r (12	2		1	4		16
					1	VI C	,10	10	KL	, –	OI.	111	JI V .	1 (/U)								

HYDROMETER RESULT

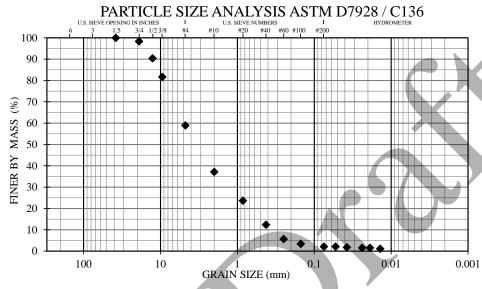
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A		
(ASTM D2434)	IV/A		
DEGRADATION	N/A		
(ATM T-313)	IN/A		
PLASTICITY INDEX	N/A		
ASTM 4318	IN/A		

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

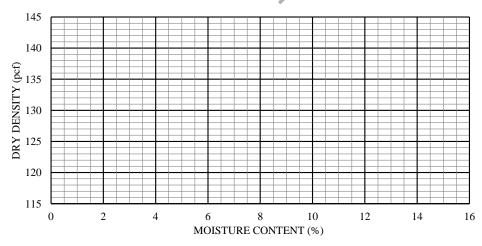

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP25B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	41.1		USCS	SW
% SAND	56.8	U	SACOE FC	NFS
% SILT/CLAY	2.1	% PAS	S. 0.02 mm	1.7
% MOIST. CONTENT	8.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI		13.	.7	
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$)	1.	1
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fine	7	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	98	
	12.70	1/2"	90	
	9.50	3/8"	82	
	4.75	#4	59	
	2.00	#10	37	
	0.85	#20	24	
	0.43	#40	12	
	0.25	#60	6	
	0.15	#100	3	
	0.075	#200	2.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

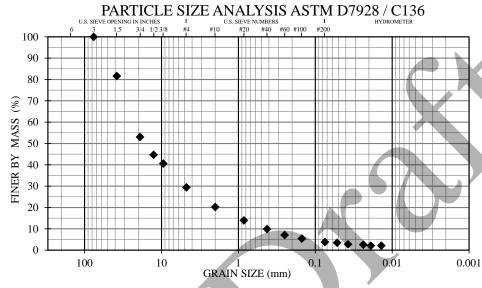
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0528	2.1
2	0.0378	1.8
5	0.0239	1.6
8	0.0189	1.6
15	0.0139	1.1
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP33A
NUMBER/ DEPTH:	S2 / 10 - 11.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	70.6		USCS	GW	
% SAND	25.6	U	SACOE FC	PFS	
% SILT/CLAY	3.8	% PAS	S. 0.02 mm	2.1	
% MOIST. CONTENT	5.2	% PASS	. 0.002 mm	N/A	
UNIFORMITY COEFFICI	53.8				
COEFFICIENT OF GRAD	ATION (C	(c)	2.4		
ASTM D1557 (uncorrected)		N/A		
ASTM D4718 (corrected)	N/A				
OPTIMUM MOIST. CONT	N/A				

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
l	38.10	1.5"	82	
	19.00	3/4"	53	
	12.70	1/2"	45	
	9.50	3/8"	41	
	4.75	#4	29	
	2.00	#10	20	
	0.85	#20	14	
	0.43	#40	10	
	0.25	#60	7	
	0.15	#100	5	
	0.075	#200	3.8	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145											+]
140													
(Fod.) 135													
DRY DENSITY (pcf) 132 135													
RY 152													
□ 120													
115]
0 2 4 6 8 10 12 14 MOISTURE CONTENT (%)								16					

HYDROMETER RESULT

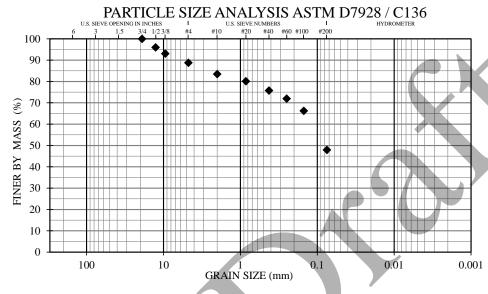
ELAPSED	DIAMETER	TOTAL %		
TIME (MIN)	(mm)	PASSING		
0				
1	0.0519	3.5		
2	0.0376	2.8		
5	0.0238	2.5		
8	0.0189	2.1		
15	0.0138	2.1		
30				
60				
250				
1440				

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

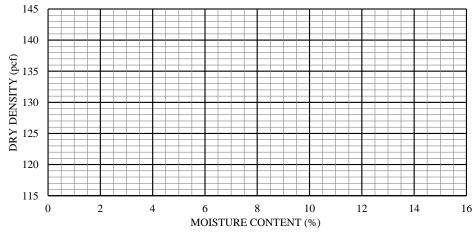

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP33A
NUMBER/ DEPTH:	S3 / 12.5 - 14'
DESCRIPTION:	Silty sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	11.2		USCS	SM
% SAND	40.9	U	SACOE FC	N/A
% SILT/CLAY	47.9	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	71.2	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIE	UNKN	OWN		
COEFFICIENT OF GRADA	TION (C _c)	UNKN	OWN
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	ENT. (co	orrected)	N/A	



ı		GRA	VEL		SAND		
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

_				
ſ	SIEVE	SIEVE	TOTAL %	SPECIFICATION
L	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
I	38.10	1.5"		
	19.00	3/4"	100	
	12.70	1/2"	96	
Į	9.50	3/8"	93	
I	4.75	#4	89	
I	2.00	#10	83	
	0.85	#20	80	
	0.43	#40	76	
	0.25	#60	72	
	0.15	#100	66	
	0.075	#200	47.9	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

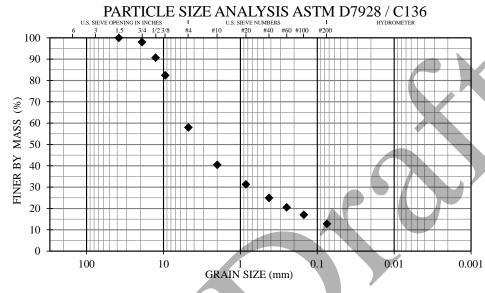
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

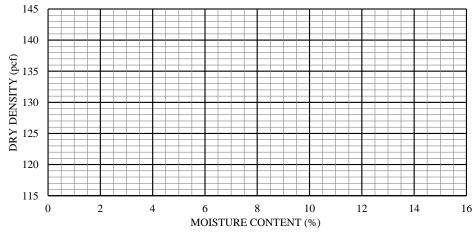

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.			
PROJECT NAME:	USFWS Fish Passage Improvements			
PROJECT NO.:	5138-18			
SAMPLE LOC.:	СОР33В			
NUMBER/ DEPTH:	S1 / 5 - 6.5'			
DESCRIPTION:	Silty sand w/ gravel			
DATE RECEIVED:	10/18/2018			
TESTED BY:	RJPC			
REVIEWED BY:	SAM			

% GRAVEL_	42.0		USCS_	SM
% SAND	45.2	U	SACOE FC	N/A
% SILT/CLAY	12.8	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	10.1	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	UNKN	OWN		
COEFFICIENT OF GRAD	UNKN	OWN		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	98	
12.70	1/2"	91	
9.50	3/8"	82	
4.75	#4	58	
2.00	#10	40	
0.85	#20	31	
0.43	#40	25	
0.25	#60	21	
0.15	#100	17	
0.075	#200	12.8	
	SIZE (mm) 152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25 0.15	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 38.10 1.5" 100 19.00 3/4" 98 12.70 1/2" 91 9.50 3/8" 82 4.75 #4 58 2.00 #10 40 0.85 #20 31 0.43 #40 25 0.25 #60 21 0.15 #100 17

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

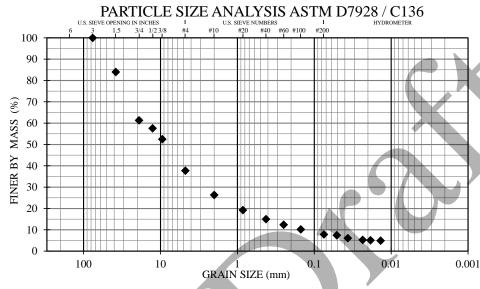
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

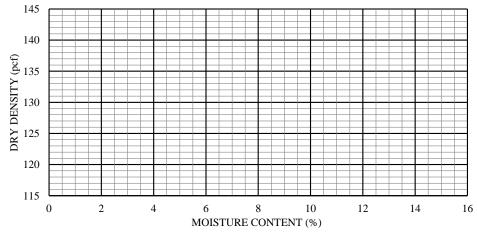

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР33В
NUMBER/ DEPTH:	S2 / 10 - 11.5'
DESCRIPTION:	Poorly-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	62.3		USCS	GP-GM
% SAND	29.9	U	SACOE FC	S1
% SILT/CLAY	7.8	% PAS	S. 0.02 mm	5.1
% MOIST. CONTENT	8.6	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		11	6.9
COEFFICIENT OF GRAD	3	.4		
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
h	76.20	3"	100	
Į	38.10	1.5"	84	
	19.00	3/4"	61	
	12.70	1/2"	58	
	9.50	3/8"	52	
	4.75	#4	38	
	2.00	#10	26	
	0.85	#20	19	
	0.43	#40	15	
	0.25	#60	12	
	0.15	#100	10	
	0.075	#200	7.8	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

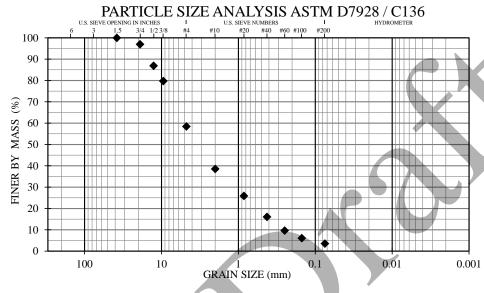
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0509	7.4
2	0.0367	6.1
5	0.0235	5.3
8	0.0186	5.1
15	0.0137	4.9
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

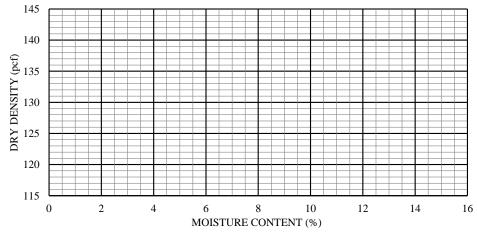

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP43A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJBC
REVIEWED BY:	SAM

% GRAVEL	41.5		USCS	SW
% SAND	55.0	U	SACOE FC	N/A
% SILT/CLAY	3.5	% PASS. 0.02 mm		N/A
% MOIST. CONTENT	7.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	19.6			
COEFFICIENT OF GRAD	1.	1		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mn	n) SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	97	
12.70	1/2"	87	
9.50	3/8"	80	
4.75	#4	58	
2.00	#10	38	
0.85	#20	26	
0.43	#40	16	
0.25	#60	10	
0.15	#100	6	
0.075	#200	3.5	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

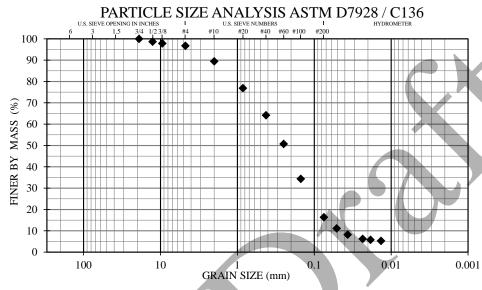
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

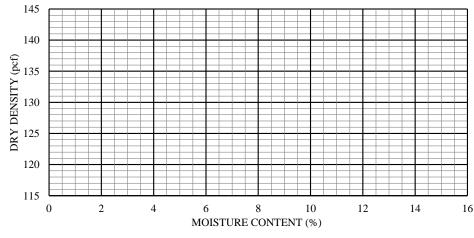
Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis


PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP43A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Silty sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	3.2		USCS	SM
% SAND	80.4	U.	SACOE FC	F2
% SILT/CLAY	16.4	% PAS	S. 0.02 mm	5.9
% MOIST. CONTENT	17.9	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	8.1			
COEFFICIENT OF GRAD	1.0)		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CON	N/A			

1	GRA	VEL		SAND		
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"		
19.00	3/4"	100	
12.70	1/2"	99	
9.50	3/8"	98	
4.75	#4	97	
2.00	#10	89	
0.85	#20	77	
0.43	#40	64	
0.25	#60	51	
0.15	#100	34	
0.075	#200	16.4	

HYDROMETER RESULT

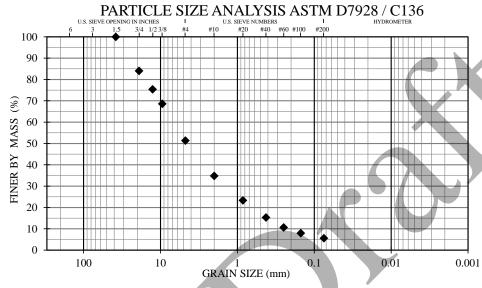
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0512	11.2
2	0.0368	8.2
5	0.0235	6.2
8	0.0185	5.7
15	0.0135	5.3
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

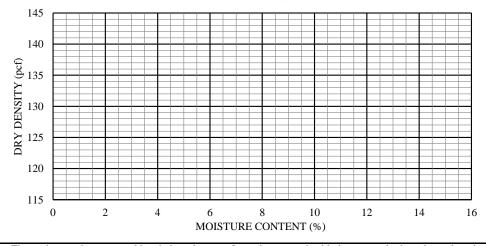
Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP43B
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	48.6		USCS	GW-GM
% SAND	45.8	U	SACOE FC	N/A
% SILT/CLAY	5.6	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	7.3	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		31	1.5
COEFFICIENT OF GRAD	1	.4		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	84	
12.70	1/2"	75	
9.50	3/8"	69	
4.75	#4	51	
2.00	#10	35	
0.85	#20	23	
0.43	#40	15	
0.25	#60	11	
0.15	#100	8	
0.075	#200	5.6	


SIEVE ANALYSIS RESULT

ELAPSED	DIAMETER	IOTAL 70
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDROMETER RESULT

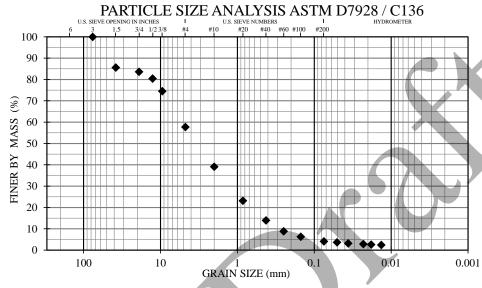
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	СОР43В
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	42.3		USCS	SW
% SAND	53.6	US	SACOE FC	NFS
% SILT/CLAY	4.1	% PAS	S. 0.02 mm	2.6
% MOIST. CONTENT	7.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		18.	.6
COEFFICIENT OF GRAD	1.3	2		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND	1	
COBBLE	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"	100	
38.10	1.5"	86	
19.00	3/4"	84	
12.70	1/2"	80	
9.50	3/8"	75	
4.75	#4	58	
2.00	#10	39	
0.85	#20	23	
0.43	#40	14	
0.25	#60	9	
0.15	#100	6	
0.075	#200	4.1	
	152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 100 38.10 1.5" 86 19.00 3/4" 84 12.70 1/2" 80 9.50 3/8" 75 4.75 #4 58 2.00 #10 39 0.85 #20 23 0.43 #40 14 0.25 #60 9 0.15 #100 6

SIEVE ANALYSIS RESULT

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																	=					=	\exists
140																						#	
(F) 135																							
DRY DENSITY (pcf) 132 135 135 135 135 135 135 135 135 135 135																						#	
S 130																						#	
125																	=					#	
120																							
115																						#	
)	2	۷	1	1	40		TI	RE	8		TE	רואי	1 r (12	2		1	4		16
					1	VI C	,10	10	KL	, –	OI.	111	JI V .	1 (/U)								

HYDROMETER RESULT

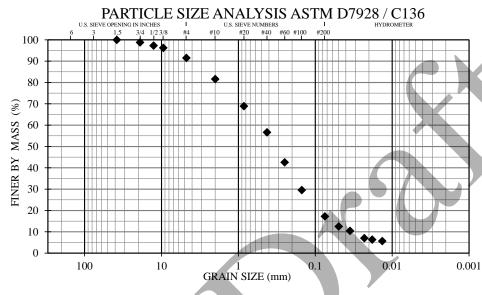
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0506	3.7
2	0.0362	3.1
5	0.0230	2.9
8	0.0182	2.6
15	0.0134	2.4
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

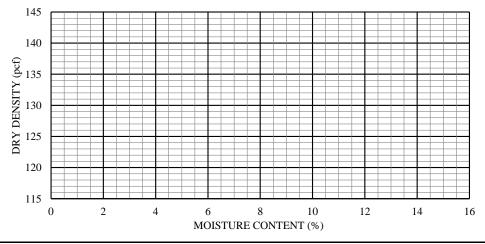
Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP43B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Silty sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJCP
REVIEWED BY:	SAM

% GRAVEL	8.5		USCS	SM
% SAND	74.3	U	SACOE FC	F2
% SILT/CLAY	17.2		S. 0.02 mm	6.6
% MOIST. CONTENT	46.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		16	.0
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$)	1.	3
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT


	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	99	
	12.70	1/2"	97	
	9.50	3/8"	96	
	4.75	#4	92	
	2.00	#10	82	
	0.85	#20	69	
	0.43	#40	57	
	0.25	#60	43	
	0.15	#100	30	
	0.075	#200	17.2	

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0496	12.5
2	0.0354	10.4
5	0.0230	7.0
8	0.0182	6.4
15	0.0134	5.7
30		
60		
250		
1440		

HYDROMETER RESULT

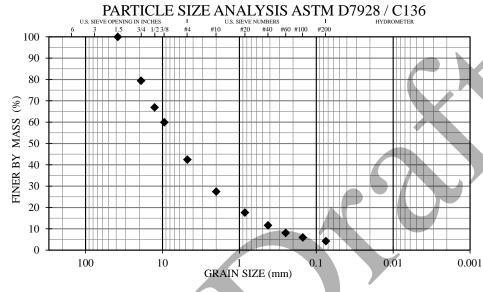
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

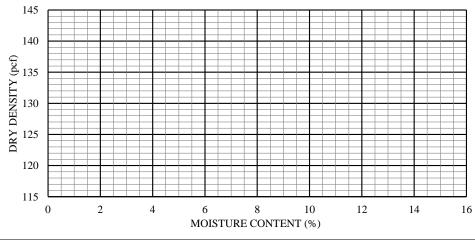

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP44A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	57.6		USCS	GW
_			_	
% SAND _	38.2	US	SACOE FC _	N/A
% SILT/CLAY	4.2	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	5.0	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		27	.6
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$)	1.	9
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND)		_
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY	

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	79	
12.70	1/2"	67	
9.50	3/8"	60	
4.75	#4	42	
2.00	#10	27	
0.85	#20	18	
0.43	#40	12	
0.25	#60	8	
0.15	#100	6	
0.075	#200	4.2	
	SIZE (mm) 152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25 0.15	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 38.10 1.5" 100 19.00 3/4" 79 12.70 1/2" 67 9.50 3/8" 60 4.75 #4 42 2.00 #10 27 0.85 #20 18 0.43 #40 12 0.25 #60 8 0.15 #100 6

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

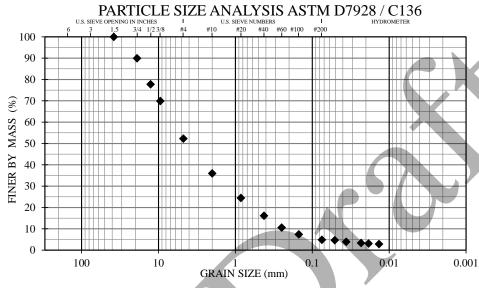
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP44A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	47.6		USCS	GW		
% SAND	47.5	U.	SACOE FC	S1		
% SILT/CLAY	4.9	% PAS	S. 0.02 mm	3.2		
% MOIST. CONTENT	7.2	% PASS	. 0.002 mm	N/A		
UNIFORMITY COEFFICI	29.5					
COEFFICIENT OF GRAD	COEFFICIENT OF GRADATION (C _c)					
ASTM D1557 (uncorrected	l)		N/A			
ASTM D4718 (corrected)			N/A			
OPTIMUM MOIST. CONT	ГЕНТ. (со	orrected)	N/A			

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	90	
12.70	1/2"	78	
9.50	3/8"	70	
4.75	#4	52	
2.00	#10	36	
0.85	#20	24	
0.43	#40	16	
0.25	#60	11	
0.15	#100	7	
0.075	#200	4.9	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																			=	\exists
140																			=	
(J) (135																				
DRY DENSITY (pcf) 135 130 125 125																			#	
DE N 130																			=	
125				Ė															=	
120				F															=	
115																				
	0	2		4	1	MC	TU	RE	8 E C	ITE	EN'	1 Γ (9		1	2		1	4		16
												•								

HYDROMETER RESULT

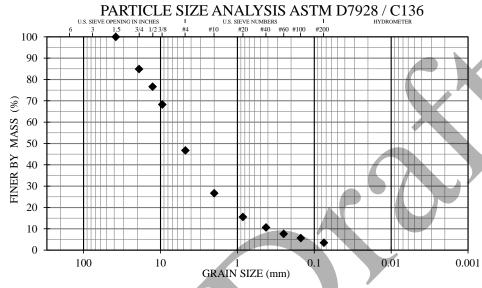
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0509	4.6
2	0.0363	3.9
5	0.0232	3.4
8	0.0185	3.1
15	0.0135	2.9
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP44A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	53.3		USCS	GW
% SAND	43.2	U	SACOE FC	N/A
% SILT/CLAY	3.5	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	6.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	19.7			
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$	2.	0
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	N/A			

1	GRAVEL		SAND			
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
۱	38.10	1.5"	100	
	19.00	3/4"	85	
	12.70	1/2"	77	
	9.50	3/8"	68	
	4.75	#4	47	
	2.00	#10	27	
	0.85	#20	16	
	0.43	#40	11	
	0.25	#60	8	
	0.15	#100	6	
	0.075	#200	3.5	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																-	\exists
140												E				+	
ct)																#	
£ 135												F				#	
DR Y DENSITY (pcf)																=	
H D D												Ė				#	
DR 153																	
120				H								Ė				=	
115																_	
0	2	4		6 NS	ΓUR	F C		TEN		0		12		1	4		16
			IVI	<i>J</i> 13	IUK	ĿC	OIV	1 151	11 (/0)							

HYDROMETER RESULT

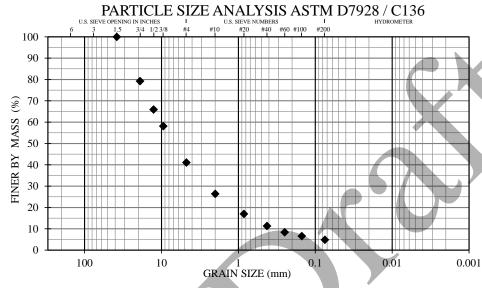
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

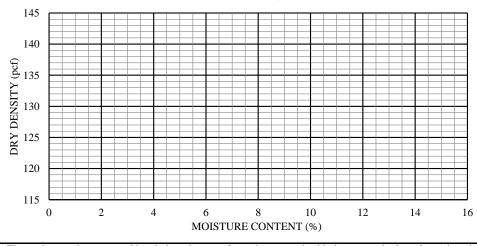

Instrumentation

Construction Monitoring Services

Thermal Analysis

Bratslavsky Consulting Engineers, Inc.
USFWS Fish Passage Improvements
5138-18
COP44B
S1 / 2.5 - 4'
Well-graded gravel w/ sand
10/18/2018
RJPC
SAM

% GRAVEL	58.9		USCS	GW	
% SAND	36.3	U	SACOE FC	N/A	
% SILT/CLAY	4.8	% PAS	S. 0.02 mm	N/A	
% MOIST. CONTENT	8.0	% PASS	. 0.002 mm	N/A	
UNIFORMITY COEFFICI		29.8			
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	2.0		
ASTM D1557 (uncorrected	.)		N/A		
ASTM D4718 (corrected)	N/A				
OPTIMUM MOIST. CONT	N/A				



1	GRAVEL		SAND				
COBBLES	Coarse	Fine	Coarse	Medium	Fine	7	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	79	
	12.70	1/2"	66	
	9.50	3/8"	58	
	4.75	#4	41	
	2.00	#10	26	
	0.85	#20	17	
	0.43	#40	11	
	0.25	#60	8	
	0.15	#100	7	
	0.075	#200	4.8	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

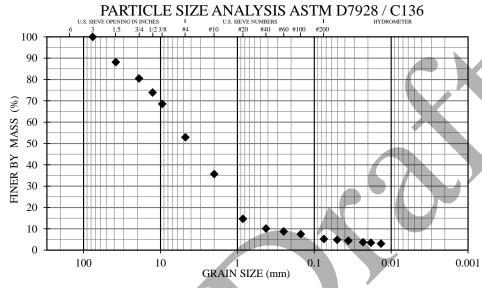
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND.	N/A
(ASTM D2434)	IV/A
DEGRADATION	N/A
(ATM T-313)	IN/A
PLASTICITY INDEX	N/A
ASTM 4318	IN/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

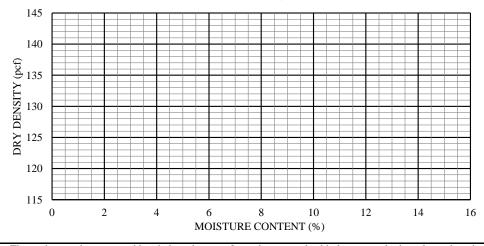

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP44B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	47.1		USCS	SW-SM
% SAND	47.7	U	SACOE FC	S2
% SILT/CLAY	5.2	% PAS	S. 0.02 mm	3.6
% MOIST. CONTENT	7.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		17	7.0
COEFFICIENT OF GRAD	ATION ($C_{\rm c}$)	1	.0
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ГЕНТ. (сс	orrected)	N/A	



GRAVEL			SAND				
COBBLES	Coarse	Fine	Coarse	Medium	Fine		SILT or CLAY

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
ì	76.20	3"	100	
ı	38.10	1.5"	88	
	19.00	3/4"	81	
	12.70	1/2"	74	
	9.50	3/8"	69	
	4.75	#4	53	
	2.00	#10	36	
	0.85	#20	15	
	0.43	#40	10	
	0.25	#60	9	
	0.15	#100	7	
	0.075	#200	5.2	

SIEVE ANALYSIS RESULT

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

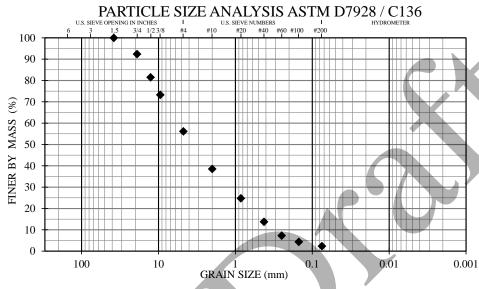
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0503	4.9
2	0.0360	4.4
5	0.0232	3.7
8	0.0184	3.5
15	0.0136	3.0
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

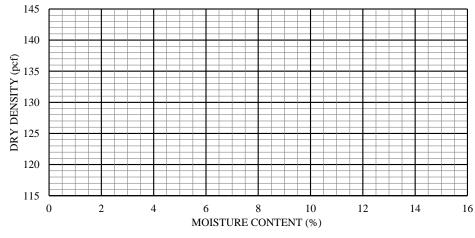

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP44B
NUMBER/ DEPTH:	S4 / 10 - 11.5'
DESCRIPTION:	Poorly-graded sand w/ gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	43.9		USCS	SP
% SAND	53.7	U	SACOE FC	N/A
% SILT/CLAY	2.4	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	9.3	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIENT (C _u)			18.	.0
COEFFICIENT OF GRADATION (C _c)			0.9	9
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTENT. (corrected)			N/A	



1		GRA'	VEL		SAND		
cc	OBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
١	76.20	3"		
Į	38.10	1.5"	100	
	19.00	3/4"	92	
	12.70	1/2"	82	
/	9.50	3/8"	73	
	4.75	#4	56	
	2.00	#10	39	
	0.85	#20	25	
	0.43	#40	14	
	0.25	#60	7	
	0.15	#100	4	
	0.075	#200	2.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

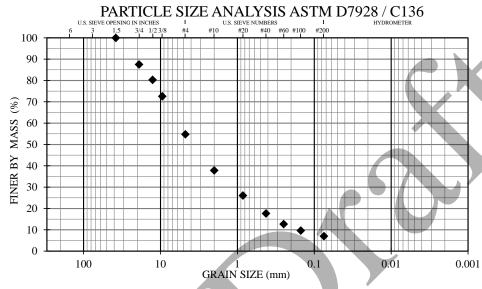
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

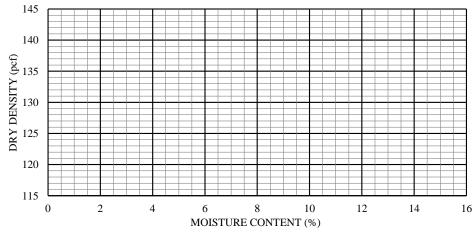

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP45A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	45.3		USCS	SW-SM
% SAND	47.7	U	SACOE FC	N/A
% SILT/CLAY	7.0	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	7.6	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		37	1.9
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1	.5
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

S	IEVE	SIEVE	TOTAL %	SPECIFICATION
SIZ	E (mm)	SIZE (U.S.)	PASSING	(% PASSING)
15	52.40	6"		
7	6.20	3"		
3	8.10	1.5"	100	
1	9.00	3/4"	88	
1.	2.70	1/2"	80	
9	0.50	3/8"	73	
4	1.75	#4	55	
2	2.00	#10	38	
(0.85	#20	26	
(0.43	#40	18	
().25	#60	13	
().15	#100	10	
0.	.075	#200	7.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

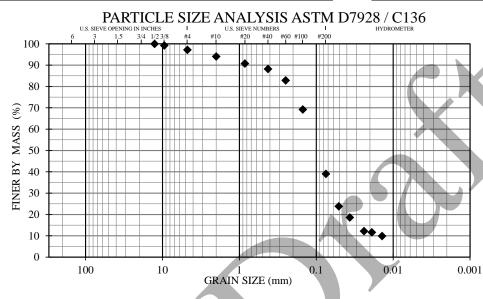
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP45A
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Silty sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	2.9	_	USCS	SM
% SAND	58.1	U.	SACOE FC	F2
% SILT/CLAY	39.0	% PAS	S. 0.02 mm	12.0
% MOIST. CONTENT	25.3	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		8.9)
COEFFICIENT OF GRAD	ATION (C _c)	2.0)
ASTM D1557 (uncorrected	l)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CON	ΓΕΝΤ. (co	orrected)	N/A	

1	GRA	VEL		SAND)		_
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY	

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"		
19.00	3/4"		
12.70	1/2"	100	
9.50	3/8"	99	
4.75	#4	97	
2.00	#10	94	
0.85	#20	91	
0.43	#40	88	
0.25	#60	83	
0.15	#100	69	
0.075	#200	39.0	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																				
140						4								#						
(F) 20 135																				
DRY DENSITY (pcf) 135 130 125									=					#						
DEN 130																				
Z 125																				
120																				
115						_						_		10]
	0	,	2	4	N	6 10	ΓU	RE	8 C(TE	ENT	1 Γ (9		12	:		1	4		16

HYDROMETER RESULT

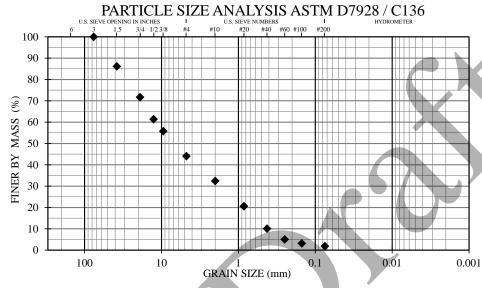
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0509	23.8
2	0.0367	18.6
5	0.0239	12.2
8	0.0189	11.6
15	0.0140	9.9
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

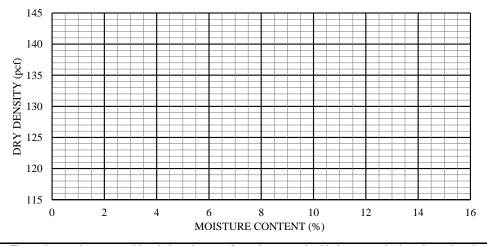
Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP45A
NUMBER/ DEPTH:	S6 / 15 - 16.5'
DESCRIPTION:	Poorly-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	55.9		USCS	GP				
% SAND	42.2	U	SACOE FC	N/A				
% SILT/CLAY	1.9	% PAS	S. 0.02 mm	N/A				
% MOIST. CONTENT	7.1	% PASS	. 0.002 mm	N/A				
UNIFORMITY COEFFICI	ENT (C _u)		28.2					
COEFFICIENT OF GRAD	ATION ($C_{\rm c}$)	0.6					
ASTM D1557 (uncorrected)		N/A					
ASTM D4718 (corrected)	N/A							
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	rrected)	N/A					

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT


	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"	100	
l	38.10	1.5"	86	
	19.00	3/4"	72	
	12.70	1/2"	61	
	9.50	3/8"	56	
	4.75	#4	44	
	2.00	#10	32	
	0.85	#20	21	
	0.43	#40	10	
	0.25	#60	5	
	0.15	#100	3	
	0.075	#200	1.9	

HYDROMETER RESULT

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

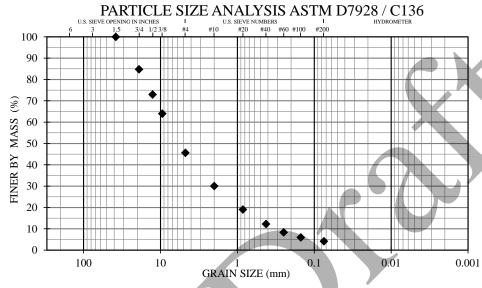
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP45B
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	54.3		USCS	GW				
% SAND	41.5	US	SACOE FC	N/A				
% SILT/CLAY	4.2	% PAS	S. 0.02 mm	N/A				
% MOIST. CONTENT	6.6	% PASS	. 0.002 mm	N/A				
UNIFORMITY COEFFICI	ENT (C _u)		26.0					
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1.4					
ASTM D1557 (uncorrected)		N/A					
ASTM D4718 (corrected)		N/A						
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A					

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
l	38.10	1.5"	100	
	19.00	3/4"	85	
	12.70	1/2"	73	
	9.50	3/8"	64	
	4.75	#4	46	
	2.00	#10	30	
	0.85	#20	19	
	0.43	#40	12	
	0.25	#60	8	
	0.15	#100	6	
	0.075	#200	4.2	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																					\equiv
140				Ė																	
(jod 125																					
DRY DENSITY (pcf) 135 130 125		=		F																	
EN 130		1		F																	
∑ 2 125				E																	
120																					
115		_		Ė						_									Ė		∄
	0	2		4		5 DIS	TU	IRE	E C		IТІ	EΝΊ	0 %)		1	2		1	4		16

HYDROMETER RESULT

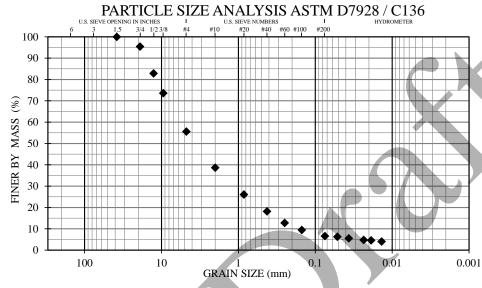
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	COP45B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	44.4		USCS	SW-SM
% SAND	49.0	U	SACOE FC	S2
% SILT/CLAY	6.6	% PAS	S. 0.02 mm	4.7
% MOIST. CONTENT	7.3	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		35	5.5
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$)	1	.5
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	-		N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL % PASSING	SPECIFICATION (C) PASSING)
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	95	
12.70	1/2"	83	
9.50	3/8"	74	
4.75	#4	56	
2.00	#10	39	
0.85	#20	26	
0.43	#40	18	
0.25	#60	13	
0.15	#100	9	
0.075	#200	6.6	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																				\exists
140																				
(f) Dct 125																				
DRY DENSITY (pcf) 135 130 125																				
130		=																		
125 22 125		_																		\exists
□ 120																				
115																				
	0	2		4	N	MC	TU	RE	E C	ITE	EN	1 Γ (⁶		1	2		1	4		16

HYDROMETER RESULT

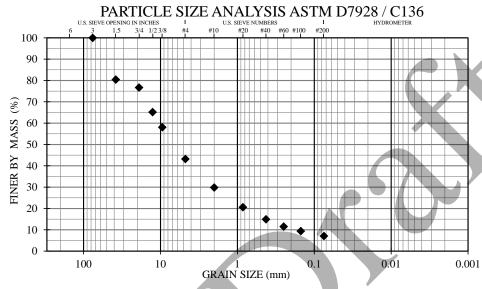
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0515	6.3
2	0.0367	5.5
5	0.0235	4.8
8	0.0188	4.6
15	0.0137	4.1
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

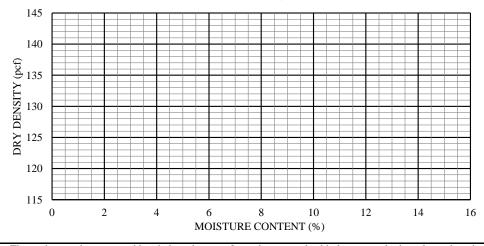
Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	CAB2A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded gravel w/ silt and sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	56.8	_	USCS	GW-GM
% SAND	36.1	U.	SACOE FC	N/A
% SILT/CLAY	7.1	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	10.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u))	57	7.8
COEFFICIENT OF GRAD	ATION (C _c)	2	.2
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	orrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"	100	
38.10	1.5"	80	
19.00	3/4"	77	
12.70	1/2"	65	
9.50	3/8"	58	
4.75	#4	43	
2.00	#10	30	
0.85	#20	21	
0.43	#40	15	
0.25	#60	11	
0.15	#100	9	
0.075	#200	7.1	
	SIZE (mm) 152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25 0.15	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 100 38.10 1.5" 80 19.00 3/4" 77 12.70 1/2" 65 9.50 3/8" 58 4.75 #4 43 2.00 #10 30 0.85 #20 21 0.43 #40 15 0.25 #60 11 0.15 #100 9


SIEVE ANALYSIS RESULT

HYDROMETER RESULT

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

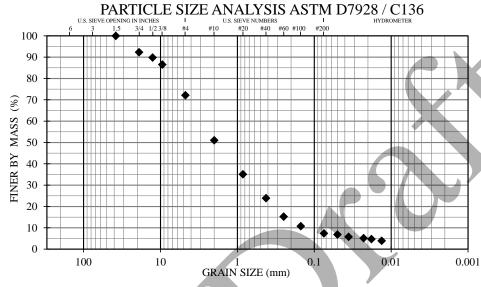
HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

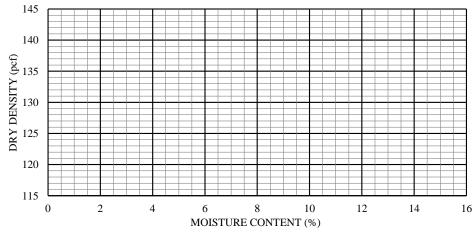

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	CAB2A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	27.9		USCS	SW-SM
% SAND	64.7	U	SACOE FC	S2
% SILT/CLAY	7.4	% PAS	S. 0.02 mm	5.0
% MOIST. CONTENT	12.0	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICII	ENT (C _u)		23	3.9
COEFFICIENT OF GRADA	1	.0		
ASTM D1557 (uncorrected))		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	92	
	12.70	1/2"	90	
	9.50	3/8"	87	
	4.75	#4	72	
	2.00	#10	51	
	0.85	#20	35	
	0.43	#40	24	
	0.25	#60	15	
	0.15	#100	11	
	0.075	#200	7.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

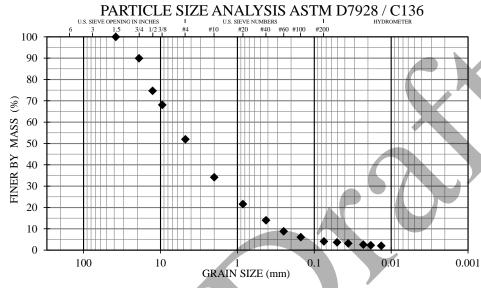
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0500	6.8
2	0.0358	5.8
5	0.0229	5.2
8	0.0181	4.7
15	0.0133	3.9
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

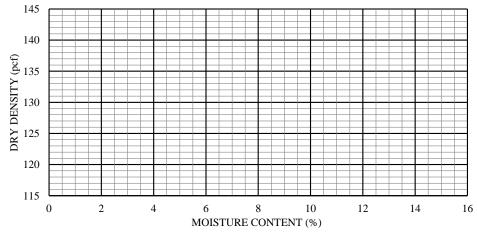

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	CAB2B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	48.0		USCS	GW
% SAND	47.9	U.	SACOE FC	PFS
% SILT/CLAY	4.1	% PAS	S. 0.02 mm	2.4
% MOIST. CONTENT	10.8	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	24.5			
COEFFICIENT OF GRAD	1	3		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	ENT. (cc	rrected)	N/A	



1	GRA	VEL		SAND)		
COBBLES	Coarse	Fine	Coarse	Medium	Fin	e	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	90	
12.70	1/2"	75	
9.50	3/8"	68	
4.75	#4	52	
2.00	#10	34	
0.85	#20	22	
0.43	#40	14	
0.25	#60	9	
0.15	#100	6	
0.075	#200	4.1	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

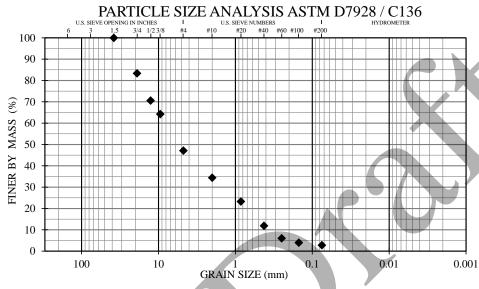
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0506	3.7
2	0.0362	3.1
5	0.0230	2.6
8	0.0184	2.3
15	0.0134	2.0
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

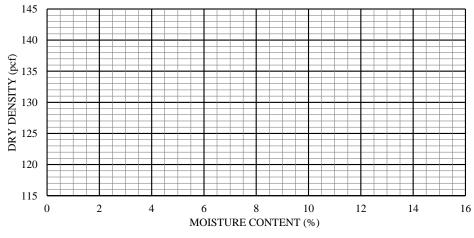

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1A
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Poorly-graded gravel w/ sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL_	52.9		USCS	GP
% SAND	44.3	U	SACOE FC	N/A
% SILT/CLAY	2.8	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	4.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		22.	.5
COEFFICIENT OF GRAD	0.3	8		
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	rrected)	N/A	



1		GRA'	VEL		SAND)			
ľ	COBBLES	Coarse	Fine	Coarse	Medium		Fine	SILT or CLAY	

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	83	
12.70	1/2"	71	
9.50	3/8"	64	
4.75	#4	47	
2.00	#10	34	
0.85	#20	23	
0.43	#40	12	
0.25	#60	6	
0.15	#100	4	
0.075	#200	2.8	
	SIZE (mm) 152.40 76.20 38.10 19.00 12.70 9.50 4.75 2.00 0.85 0.43 0.25 0.15	SIZE (mm) SIZE (U.S.) 152.40 6" 76.20 3" 38.10 1.5" 19.00 3/4" 12.70 1/2" 9.50 3/8" 4.75 #4 2.00 #10 0.85 #20 0.43 #40 0.25 #60 0.15 #100	SIZE (mm) SIZE (U.S.) PASSING 152.40 6" 76.20 3" 38.10 1.5" 100 19.00 3/4" 83 12.70 1/2" 71 9.50 3/8" 64 4.75 #4 47 2.00 #10 34 0.85 #20 23 0.43 #40 12 0.25 #60 6 0.15 #100 4

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

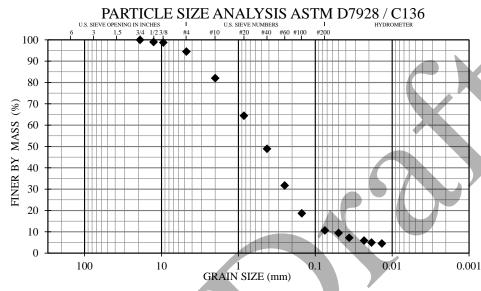
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

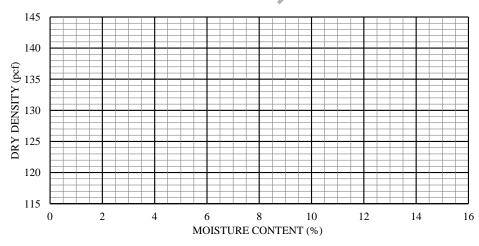

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1A
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Well-graded sand w/ silt
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	5.5		USCS	SW-SM
% SAND	83.9	U	SACOE FC	S2
% SILT/CLAY	10.6	% PAS	S. 0.02 mm	5.1
% MOIST. CONTENT	16.4	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	11.9			
COEFFICIENT OF GRAD	1	.2		
ASTM D1557 (uncorrected	N/A			
ASTM D4718 (corrected)	N/A			
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
21111 (11111)	2111 (2111)		(/01110011(0)
152.40	C!!		
152.40	6"		
76.20	3"		
38.10	1.5"		
19.00	3/4"	100	
12.70	1/2"	99	
9.50	3/8"	99	
4.75	#4	94	
2.00	#10	82	
0.85	#20	64	
0.43	#40	49	
0.25	#60	32	
0.15	#100	19	
0.075	#200	10.6	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

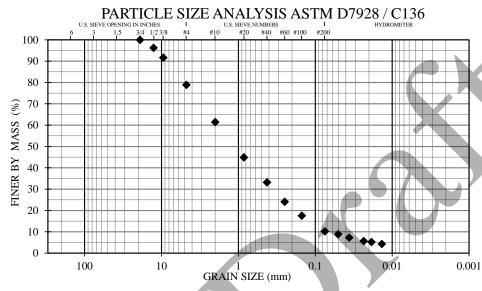
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0497	9.4
2	0.0363	7.2
5	0.0232	5.9
8	0.0185	5.0
15	0.0136	4.5
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1A
NUMBER/ DEPTH:	S5 / 12.5 - 14'
DESCRIPTION:	Poorly-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

% GRAVEL	21.1	_	USCS	SP-SM
% SAND	68.7	U	SACOE FC	S2
% SILT/CLAY	10.2	% PAS	S. 0.02 mm	5.4
% MOIST. CONTENT	10.6	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICIEN	VT (C _u)		26	5.6
COEFFICIENT OF GRADA	TION (C_c)	1.	.0
ASTM D1557 (uncorrected)			N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONTE	NT. (co	orrected)	N/A	

1	GRA	VEL		SAND		
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"		
19.00	3/4"	100	
12.70	1/2"	96	
9.50	3/8"	92	
4.75	#4	79	
2.00	#10	61	
0.85	#20	45	
0.43	#40	33	
0.25	#60	24	
0.15	#100	18	
0.075	#200	10.2	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

145																				\exists
140																				
(f) Dct 125																				
DRY DENSITY (pcf) 135 130 125																				
130 ENS		=																		
125 22 125		_																		\exists
□ 120																				
115																				
	0	2		4	N	MC	TU	RE	E C	ITE	EN	1 Γ (⁶		1	2		1	4		16

HYDROMETER RESULT

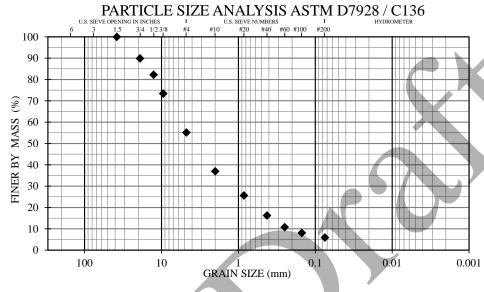
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0503	8.9
2	0.0363	7.3
5	0.0235	5.7
8	0.0185	5.2
15	0.0136	4.3
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

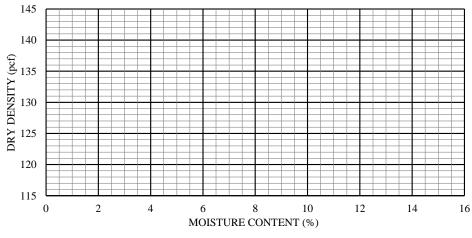

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1B
NUMBER/ DEPTH:	S1 / 2.5 - 4'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJCP
REVIEWED BY:	SAM

% GRAVEL	44.9		USCS	SW-SM
% SAND	49.2	U	SACOE FC	N/A
% SILT/CLAY	5.9	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	8.5	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		27	7.2
COEFFICIENT OF GRAD	ATION (C	$C_{\rm c}$	1	.3
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	



ı		GRA	VEL		SAND		
	COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	_	_	_	
	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
۱	38.10	1.5"	100	
	19.00	3/4"	90	
	12.70	1/2"	82	
	9.50	3/8"	73	
	4.75	#4	55	
	2.00	#10	37	
	0.85	#20	26	
	0.43	#40	16	
	0.25	#60	11	
	0.15	#100	8	
	0.075	#200	5.9	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

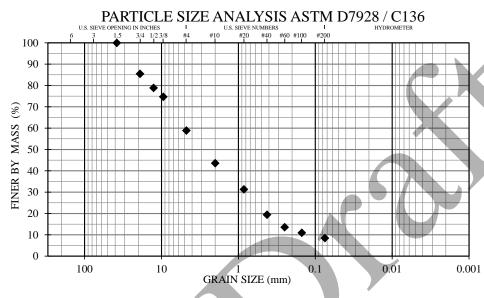
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering

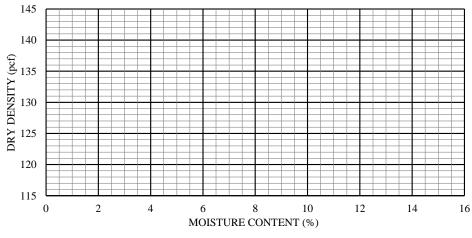

Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1B
NUMBER/ DEPTH:	S2 / 5 - 6.5'
DESCRIPTION:	Well-graded sand w/ silt and gravel
DATE RECEIVED:	10/18/2018
TESTED BY:	RJCP
REVIEWED BY:	SAM

% GRAVEL	41.1		USCS	SW-SM
% SAND	50.5	U.	SACOE FC	N/A
% SILT/CLAY	8.4	% PAS	S. 0.02 mm	N/A
% MOIST. CONTENT	4.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		42	2.0
COEFFICIENT OF GRAD	ATION ($C_{\rm c}$)	1	.0
ASTM D1557 (uncorrected	.)		N/A	
ASTM D4718 (corrected)			N/A	
OPTIMUM MOIST. CONT	ΓΕΝΤ. (co	rrected)	N/A	



	GRA'	VEL		SAND)	
COBBLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

	SIEVE	SIEVE	TOTAL %	SPECIFICATION
	SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
	152.40	6"		
	76.20	3"		
ı	38.10	1.5"	100	
	19.00	3/4"	85	
	12.70	1/2"	79	
	9.50	3/8"	75	
	4.75	#4	59	
	2.00	#10	44	
	0.85	#20	31	
	0.43	#40	19	
	0.25	#60	14	
	0.15	#100	11	
	0.075	#200	8.4	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557

HYDROMETER RESULT

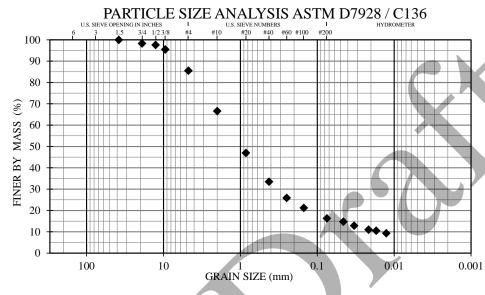
ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1		
2		
5		
8		
15		
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Laboratory Testing

Geotechnical Engineering


Instrumentation

Construction Monitoring Services

Thermal Analysis

PROJECT CLIENT:	Bratslavsky Consulting Engineers, Inc.
PROJECT NAME:	USFWS Fish Passage Improvements
PROJECT NO.:	5138-18
SAMPLE LOC.:	SHER1B
NUMBER/ DEPTH:	S3 / 7.5 - 9'
DESCRIPTION:	Silty sand
DATE RECEIVED:	10/18/2018
TESTED BY:	RJPC
REVIEWED BY:	SAM

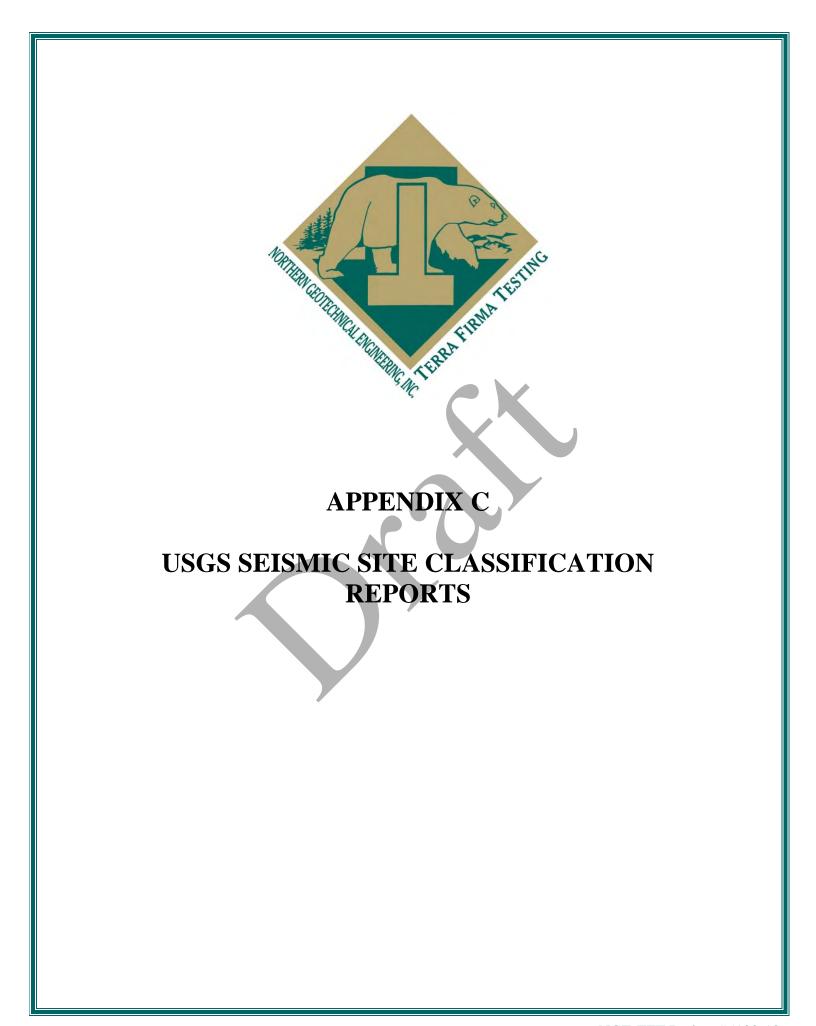
o/ CD ATTEL	115		110.00	CD C
% GRAVEL	14.5		USCS _	SM
% SAND_	69.2	US	SACOE FC _	F2
% SILT/CLAY	16.3	% PAS	S. 0.02 mm	11.1
% MOIST. CONTENT	7.7	% PASS	. 0.002 mm	N/A
UNIFORMITY COEFFICI	ENT (C _u)		106	5.2
COEFFICIENT OF GRAD	ATION (0	$C_{\rm c}$)	4.	8
ASTM D1557 (uncorrected)		N/A	
ASTM D4718 (corrected)	-		N/A	
OPTIMUM MOIST. CONT	TENT. (co	rrected)	N/A	

1		GRA	VEL		SAND)	
COBE	BLES	Coarse	Fine	Coarse	Medium	Fine	SILT or CLAY

SIEVE ANALYSIS RESULT

SIEVE	SIEVE	TOTAL %	SPECIFICATION
SIZE (mm)	SIZE (U.S.)	PASSING	(% PASSING)
152.40	6"		
76.20	3"		
38.10	1.5"	100	
19.00	3/4"	98	
12.70	1/2"	98	
9.50	3/8"	95	
4.75	#4	86	
2.00	#10	67	
0.85	#20	47	
0.43	#40	33	
0.25	#60	26	
0.15	#100	21	
0.075	#200	16.3	

MOISTURE-DENSITY RELATIONSHIP ASTM D1557


145																				\exists
140																				
(f) Dct 125																				
DRY DENSITY (pcf) 135 130 125																				
130 ENS		=																		
125 22 125		_																		\exists
□ 120																				
115																				
	0	2		4	ľ	MC	TU	RE	E C	ITE	EN	1 Γ (9		1	2		1	4		16

HYDROMETER RESULT

ELAPSED	DIAMETER	TOTAL %
TIME (MIN)	(mm)	PASSING
0		
1	0.0458	14.7
2	0.0331	12.9
5	0.0215	11.0
8	0.0171	10.5
15	0.0127	9.3
30		
60		
250		
1440		

HYDRAULIC COND. (ASTM D2434)	N/A
DEGRADATION (ATM T-313)	N/A
PLASTICITY INDEX ASTM 4318	N/A

The testing services reported herein have been performed to recognized industry standards, unless otherwise noted. No other warranty is made. Should engineering interpretation or opinion be required, NGE-TFT will provide upon written request.

Design Maps Summary Report

User-Specified Input

Report Title USFWS Fish Passage Improvements

Thu November 8, 2018 17:44:48 UTC

Building Code Reference Document 2012/2015 International Building Code

(which utilizes USGS hazard data available in 2008)

Site Coordinates 60.44096°N, 145.13214°W

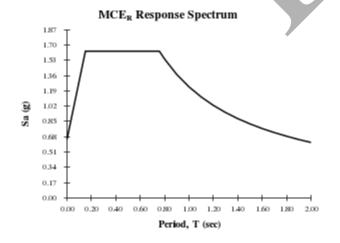
Site Soil Classification Site Class D - "Stiff Soil"

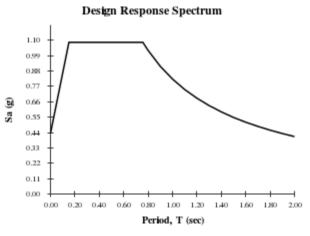
Risk Category I/II/III

USGS-Provided Output

$$S_s = 1.630 g$$

$$S_{MS} = 1.630 g$$


$$S_1 = 0.823 g$$


$$S_{M1} = 1.234 g$$

$$S_{DS} = 1.086 g$$

$$S_{D1} = 0.823 g$$

For information on how the SS and S1 values above have been calculated from probabilistic (risk-targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document.

Although this information is a product of the U.S. Geological Survey, we provide no warranty, expressed or implied, as to the accuracy of the data contained therein. This tool is not a substitute for technical subject-matter knowledge.

ISGS Design Maps Detailed Report

2012/2015 International Building Code (60.44096°N, 145.13214°W)

Site Class D - "Stiff Soil", Risk Category I/II/III

Section 1613.3.1 — Mapped acceleration parameters

Note: Ground motion values provided below are for the direction of maximum horizontal spectral response acceleration. They have been converted from corresponding geometric mean ground motions computed by the USGS by applying factors of 1.1 (to obtain S_s) and 1.3 (to obtain S₁). Maps in the 2012/2015 International Building Code are provided for Site Class B. Adjustments for other Site Classes are made, as needed, in Section 1613.3.3.

From <u>Figure 1613.3.1(4)</u>[1]

 $S_s = 1.630 g$

From <u>Figure 1613.3.1(5)</u>[2]

 $S_1 = 0.823 g$

Section 1613.3.2 — Site class definitions

The authority having jurisdiction (not the USGS), site-specific geotechnical data, and/or the default has classified the site as Site Class D, based on the site soil properties in accordance with Section 1613.

2010 ASCE-7 Standard - Table 20.3-1 SITE CLASS DEFINITIONS

Site Class	\overline{v}_s	$\overline{\textit{N}}$ or $\overline{\textit{N}}_{ch}$	$\overline{s}_{\mathrm{u}}$
A. Hard Rock	>5,000 ft/s	N/A	N/A
B. Rock	2,500 to 5,000 ft/s	N/A	N/A
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50	>2,000 psf
D. Stiff Soil	600 to 1,200 ft/s	15 to 50	1,000 to 2,000 psf
E. Soft clay soil	<600 ft/s	<15	<1.000 psf

Any profile with more than 10 ft of soil having the characteristics:

- Plasticity index PI > 20,
- Moisture content $w \ge 40\%$, and
- Undrained shear strength \overline{s}_{\parallel} < 500 psf

F. Soils requiring site response analysis in accordance with Section 21.1

See Section 20.3.1

For SI: $1ft/s = 0.3048 \text{ m/s} 1 \text{lb/ft}^2 = 0.0479 \text{ kN/m}^2$

Section 1613.3.3 — Site coefficients and adjusted maximum considered earthquake spectral response acceleration parameters

TABLE 1613.3.3(1) VALUES OF SITE COEFFICIENT Fa

Site Class	Mapped Spectral Response Acceleration at Short Period							
	S _s ≤ 0.25	$S_{s} = 0.50$	$S_{S} = 0.75$	S _S = 1.00	S _s ≥ 1.25			
А	0.8	0.8	0.8	0.8	0.8			
В	1.0	1.0	1.0	1.0	1.0			
С	1.2	1.2	1.1	1.0	1.0			
D	1.6	1.4	1.2	1.1	1.0			
Е	2.5	1.7	1.2	0.9	0.9			
F		See Se	ction 11.4.7 of	ASCE 7				

Note: Use straight-line interpolation for intermediate values of S_s

For Site Class = D and $S_s = 1.630 \text{ g}$, $F_a = 1.000 \text{ g}$

TABLE 1613.3.3(2) VALUES OF SITE COEFFICIENT F.

Site Class	Mapped Spectral Response Acceleration at 1-s Period								
	S ₁ ≤ 0.10	$S_1 = 0.20$	$S_1 = 0.30$	$S_1 = 0.40$	S ₁ ≥ 0.50				
A	0.8	0.8	0.8	0.8	0.8				
В	1.0	1.0	1.0	1.0	1.0				
С	1.7	1.6	1.5	1.4	1.3				
D	2.4	2.0	1.8	1.6	1.5				
Е	3.5	3.2	2.8	2.4	2.4				
F		See Sec	tion 11.4.7 of A	ASCE 7					

Note: Use straight-line interpolation for intermediate values of S₁

For Site Class = D and $S_1 = 0.823 \text{ g}$, $F_v = 1.500$

Equation (16-38):
$$S_{M1} = F_{\nu}S_1 = 1.500 \times 0.823 = 1.234 g$$

Section 1613.3.4 — Design spectral response acceleration parameters

Equation (16-39):
$$S_{DS} = \frac{1}{3} S_{MS} = \frac{1}{3} \times 1.630 = 1.086 g$$

Equation (16-40):
$$S_{D1} = \frac{2}{3} S_{M1} = \frac{2}{3} \times 1.234 = 0.823 g$$

Section 1613.3.5 — Determination of seismic design category

TABLE 1613.3.5(1)

SEISMIC DESIGN CATEGORY BASED ON SHORT-PERIOD (0.2 second) RESPONSE ACCELERATION

VALUE OF S _{DS}	RISK CATEGORY							
VALUE OF S _{DS}	I or II	III	IV					
S _{DS} < 0.167g	А	А	А					
$0.167g \le S_{DS} < 0.33g$	В	В	С					
$0.33g \le S_{DS} < 0.50g$	С	С	D					
0.50g ≤ S _{DS}	D	D	D					

For Risk Category = I and S_{DS} = 1.086 g, Seismic Design Category = D

TABLE 1613.3.5(2)

SEISMIC DESIGN CATEGORY BASED ON 1-SECOND PERIOD RESPONSE ACCELERATION

VALUE OF S _{D1}	RISK CATEGORY								
VALUE OF S _{D1}	I or II	III	IV						
S _{D1} < 0.067g	А	А	А						
$0.067g \le S_{D1} < 0.133g$	В	В	С						
$0.133g \le S_{D1} < 0.20g$	С	С	D						
0.20g ≤ S _{D1}	D	D	D						

For Risk Category = I and $S_{D1} = 0.823$ g, Seismic Design Category = D

Note: When S_1 is greater than or equal to 0.75g, the Seismic Design Category is **E** for buildings in Risk Categories I, II, and III, and F for those in Risk Category IV, irrespective of the above.

Seismic Design Category

■ "the more severe design category in accordance with Table 1613.3.5(1) or 1613.3.5(2)" = E

Note: See Section 1613.3.5.1 for alternative approaches to calculating Seismic Design Category.

References

- 1. Figure 1613.3.1(4): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(4).pdf
- 2. Figure 1613.3.1(5): https://earthquake.usgs.gov/hazards/designmaps/downloads/pdfs/IBC-2012-Fig1613p3p1(5).pdf